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STRUCTURAL ANALYSS

A SOURCE OF LARGE RRORS IN CALCULATING

SYSTEM FREQUENCIES

Robert M. Mains

Department of Civil Engineering
Washington University

St. Louis, Missouri

Attention is called to errors in system frequency calculations resulting
from the use of non-diagonal mass matrices with eigenvalue routines that
replace the mss matrix with its eigenvalues before proceeding to the
calculation of system frequencies. The errors are illustrated in
several different solutions of an 18 degree-of-freedo system. What
can be done to avoid these errors is presented.

in some specific instances recently, the consistent (Archer) apes are shown in Table 1,
author has observed errors in the determination together with the eigenvalues of the consistent
of systan frequencies by factors of 3 to 10. mass matrix.
These errors were costly in replacement or
retrofit, so an investigation was undertaken Eight different solutions for elgenvalues
to determine the cause of the errors. In each were made with the results shown in Table 2, in
case, the Archer formulation of consistent which
mas was computer generated, and so was the
stiffness matrix. These matrices were then Column 1. Frequencies from K *K E t0, with
run through one of several widely used eigen- EIGN5/RIO, MD - diagonal mass matrix
value routines to get system frequencies and by eyeball.
mode shapes. If the stiffness and ases matrices -
had been repetitive, all would have been well, 2. Frequencies from K * -- I,a *with
but in these cases both the stiffness and mass EIGRF/INSL, wholly real.
matrices had considerable texture (more than
1000 to 1 variation In magnitudes). Further 3. Frequencies from K * MI, with
examination of the eigenvalue routines revealed EIGRF/INSL, HC - consistent mss per
tt they uspd the device of formulating Archer, wholly real.

* I * K-%to achev symmtry. For a
diagonal ess matrix, H is no problem, but 4. Frequencies from M. * K * M"I with
with the non-diagonal ases matrices generated EIGN5/RK. ME - eisenvalues of HC
in the progr me, the sagenvalue routines first arranged in near natural order by
found the esigenvalues of the mass matrix and eyeball.
used the inverse square rooI of these eigen-
values to Set a diagonal H-2. Unfortunately, 5. Frequencies from 1 * K * L , with
the routines ordered the eigenvalues of the BIGNS/ItM, MDA - dlisonal mass
mnas matrix and scrambled the coordinate order arranged in ascending order.
in the process. Since the eigenvalues of the
mass matrix constitute a transformed set of 6. Frequencies from M * K * M , with
coordinates, they cannot be used to multiply EIGU5/REM, MEA - eenvalues of ME
the untransformed stiffness coordinates, arranged in ascending order.

To study this problem further, the system 7. Frequencies from M * K * M, with
shown in Fig. 1 was used. This system was 11GN5/RNM, Mnn - dagonal mass
chosen for two reasons: first, the author had arranged in dscending order.
used this system for several years as a check
problem on different computers with consistent B. Frequencies from K * , with
results; second, the stiffness had a range of IGN/MK. D -eenv uesf ME
2250 to 1, and the mass bad a range of 5400 to arranged In dscending order.
1. if the foregoing hypothesis wre correct,this system should show it strongly. The main RIGRF/IMS1, "calculates eigenvalues and eien-

disonal* of stiffness, diagonal mass, and vectors of a real, general matrix," not

[-- nm ]y ,4. .- 7i . ~ *~--



required to be symmetric. Eigenvalues and except for eigenvectors number one and two from .

eigenvectors may be complex, solutions 1 and 2, which are shown in Table 3.
While the frequencies from 1 and 2 were iden-

EIGN5/RM calculates eigenvalues and eigen- tical, the vector shapes were radically dif-
vectors from M1 * K * M-. When M is not ferent, so that further calculations involving
diagonal, the eigenvalues of M are used the vector shapes (as for stress) would also
instead and are ordered ascending or des- be different.
cending. .*

From the numbers in Table 2, it seems ,
NR11OT, from the IBM system 360 Scientific Sub- clear that the use of a non-diagonal mass "

routine Package (SSRP), "finds the eigen- matrix in dynamic system analysis can lead to
values and eigenvectors of a real, square large errors if the eigenvalue routine uses
non-symmetric matrix of the special form the eigenvalues of the mass matrix in place of
B- 1 * A, where both B and A are real, sym- the matrix. If the K * X-1 formulation is used
metric matrices and B is positive def- with a routine like EIGRF/DSL, the eigenvalues
inite." This routine calls EIGEN from the are correct, but the eigenvectors are not %. .
SSRP to determine the eigenvalues of B, orthogonal and subsequent calculations need to
orders them in descending order, and hen be modified. Both of these problems can be
finds the eigenvalues of B- * A * B - . gotten around if the non-diagonal mass matrix

is replaced by its triangular decomposition
In Table 2, the first two coltmhs were L * LT. This replacement permits

identical all the way. Columns 3 and 4 were the eigenvalue solution of * K * L , which
close to 1 and 2 for the lower third of the is symmetric and has orthogonal eigenvectors,
frequencies and differed appreciably thereafter. so that subsequent calculations can be carried .

- Columns 5 and 6 are close to each other in the through the same as for a diagonal mass matrix.
lower third, but a factor of 10 different from The use of the triangular decomposition of the " %
I and 2. The same comments apply to colmns 7 mass matrix was called to the author's atten-
and 8 as to 5 and 6. tion by Mr. Eugene Sevin of the Defense Nuclear .,

Agency, and the author gratefully acknowledges
The eigenvector sets for the various solu- this.

tions were too voluminous to be reproduced here

YTABLE I

Diagonals of Matrices Used .

Diagonal Diagonal Diagonal of Eigenvalues
of Mass Consistent of Consistent

t_ , Stiffness 2 Mass 2 2:
lb/in lb sec /in lb sec /in lb e in

0.13491.07 0.77700+00 0.57720+00 0.12211+00
4'O0 0.98719.09 0.77700+01 0.77700+01 0.77447.01

0.76931+07 0.7770000 0.57720.00 0.12211+00
0 0.50572+09 0.77700.01 0.77700+01 0.77447+01

6. 0 \%0.52064+09 0.77700+01 0.77700+01 0.77447+01

4 0.21801+07 0.12950+02 0.12950+02 0.13430+02
0.30418+10 0.4200004 0.42000+04 0.42000+04

0.23992+07 0.12950+02 0,19950+0' 0.13430+02
0.22293+10 0.42000+04 0.42000+04 0.42000+04

PIG. 0.31847+08 0.12950+02 0.1?2950+02 0.13430+02

0.12500.08 0.42000+04 0.4200004 0.4200004
in, 0.13491+07 0.77700+00 0.57720+00 0.12277+00

0.98719+09 0.77700+01 0.77700+01 0.82076,01
0.76931+07 0.77700+00 0.57720+00 0.12277+00
0.50572+09 0.77700+01 0.77700+01 0.82076.01
0.16010+08 0.77700+00 0.57720.00 0.12277+00
0.52064.09 0.77700+01 0.77700+01 0.82076+01

2

- W 4
'



!131Z 2

ftequncnol. for Different Solutions, Hz .*

4.1 2 3 4 5678

8.50 8.50 8.50 8.51 0.95 0.95 0.75 0.80
16.12 16.12 15.95 16.31 11.59 11.44 6.25 6.25
16.22 16.22 16.00 16.70 21.60 22.36 13.34 13.40
35.46 35.46 37.27 42.61 51.97 55.98 25.24 26.30
50.46 50.46 50.11 49.57 59.39 62.37 54.41 53.67
117.9 117.9 124.2 127.1 64.37 64.45 94.25 93.01

126.7 126.7 126.5 274.1 115.6 115.2 97.08 199.3
142.4 142.4 140.0 283.9 117.2 195.1 200.7 228.5
484.1 484.1 584.3 1186. 201.4 220.8 279.0 285.5
485.6 485.6 587.5 1192. 217.1 248.8 473.8 855.8
722.2 722.2 723.9 1264. 473.6 1188. 760.7 991.1
763.9 763.9 784.5 1301. 760.5 1356. 864.6 1186.

1293. 1293. 3039. 1334. 1378. 1830. I009. 1836.
1294. 1294. 3049. 1369. 2317. 2371. 2367. 2486.
13O6.7 1306.7 3221. 1786. 3215. 3149. 3119. 3054.
1306.8 1306.8 3226. 1814. 4121. 10285. 4120. 10317.
1798.9 1798.9 3668. 1837. 4292. 1036. 4293. 10394.
1799.2 1799.2 3705. 1861. 5692. 14319. 5692. 14280.

TAK 3 ".1

Compamon of RUienr otor,

,igenvector no.1 R1genveotor no.2
W JGRF R GN5 ZIGFIY, RTGNL

S+0.47581-02 -0.24729-01 +0.5569-01 +0.21024+00
-0.13o71-15 -0.60205-10 -o.386O-13 -0.23599-08
+0.34562-15 -0.74144-09 -0.94688-14 -0.60161-0
+0.11659-03 -0.27964-02 +0.58575-02 +0.25372-01
-0.20680-14 -0.32534-07 -0.11484-11 -0.70346-06
-0.12083-02 -0.66189-03 -0.99394-02 +0.71654-02
+0.82262-01 -0.26185-01 0.11770+01 +0.26594+00

S+0.88150-14 -0.16893-10 +0.17071-11 +0.17459-09
-0.45632-15 -0.23894-06 -0.20972-14 -0.91465-09
-0.24881-07 -0.83O66-05 -0.3160-06 +0.70316-04
-0.3048-13 -0.52728-07 -0.19227-10 -0.70646-06
-0.15969.+0 +0.15354-01 +0.21944+01 0.15332-02
+0.47581-02 -0.24729-01 +0.55669-01 +0.21024+00
+0.12481-15 -0.15504-09 -0.38603-13 -0.23962-08
+0.27998-15 +0.42277-10 +0.91848-14 +0.57532-08
-0.11659-03 +0.60594-04 -0.58575-02 -0.22122-02
-0.22953-14 -0.32657-07 -0.11491-11 -0.70350-06
-0.12083-02 +0.62796-03 -0.99394-02 -0.37538-02

3
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DISCUSSION
• ..

mr. Quota. (lIT Research Institute): I was mr. ma:in. One of the things I try very hard
curious as to which programs the two consultants to do with my classes is to make sure that the
used. I am really skeptical in the sense that students understand what they are doing. So
there are many commrcial programs which are I make them go through dynamic analysis the
available and usually they do try to solve hard way with the hands-on operation of the
problem and show that they are able to solve programs, so that they know what is going on at
certain problems; but having a error of the each step and so that they come out of it with
order of magnitude which you showed certainly a not of solved problems that they can use to
is not the answer, check out any black box they are subjected to

later on. When they go out from the University
Dr. Mains: In the case of the floor system the to the Job, quite routinely they are handed
programs that were used and the people doing the a problem and told to put this on the computer
analysis are a part of one of the largest and get some answers. They have no opportunity
dynamic analysis operations in the country. to find out what the computer has on it.
They purport to do this kind of thing all day I think this is a fairly widespread practice
every day and I know that they have an I get feed back from it. Every student that
automatic consistent mass calculator built gos out and then comes back to visit a year
Into their programs. Their programs also or two later tells me the same story.
substitute the eigenvalues of the mass matrix
in that particular case. The other used a
commercially available program that is widely
used around the country. I know of three
companies that use this program routinely for
dynamic analysis. One of these was the
contractor involved in the blast test that I
spoke of, another is a large company In the
St. Louis area, and the third is a very large
company not very many miles south of here.
I have observed this and I am pretty sure of
my ground.

Hr. Pea. (University of Louisville):
I don't know if the problem I am going to
present is directly related to yours but wa
also had trouble with a consistent mass matrix
some years ago. I suggested that a student
who was working on a master's thesis compare
results using the consistent mass, a lumped
mass, end also what might be called the exact
solution of the Bernoulli-Euler equations.
He found tremendous differences. To test the
programs he used simple numbers like units for
everything, such as the modulus of elasticity
and he found tremendous differences in computing
the consistent mass. So I investigated this
further and made a series expansion of the
exact solution; I found out that the consistent
mass is the first two terms of the series
expansion, where one term is the stiffness and
the other term would be the mass that we used
in the consistent. By using these simple
numbers to test the programs he was out of the
range of convergence of the series so this
explained why the consistent mass gave wrong
answers. This might not be your case because
you checked this with another program, it is
probably a question of programming. But I
thought it might be of interest to know that%
because with consistent mass we have to be %
careful in the convergence of the series that

* actually represents these terms.
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RESEARCH METHOD OF THE EIGENMODES

AND GENERALIZED ELEMENTS OF A LINEAR MECHANICAL STRUCTURE

R. FILLOD Dr. Ing. and J. PIRANDA Dr. Ing.
Laboratoire de Mfcanique Appliqude, associd au CNRS, Besangon, France

The determination of the eigenfrequenciea, eigeamodes and generalized
elements of a structure is fundamental in the study of its dynamic beha-

vior (e.g. fluttering of planes).
Of all the methods tested, those based on the appropriation of modes seem
to give the most accurate results.
The experimental methods used today are often unreliable and do not al-
ways guarantee that all the eigenmodes corresponding to a given frequency
range have been isolated. The method which we suggest does not present
these drawbracks. This method is based on the appropriation method and
permits to determine the eigenvectors and generalized elements directly
by calculus from the forced responses to a given frequency.

I DEFINITION OF APPROPRIATION quencies have been isolated. Basically the mini-

Appropriation consists of finding which sys- mum of the in phase response relative to the ex-

tem of forces must be applied to a structure in citation is detected by varying each applied

order to obtain : force and the excitation frequency successively.

- a response proportional to an eigenmode of the This method offers the advantage of being well-

associated conservative system ; suited to automation but it is unsuccessful whe-

4 - the eigenfrequency corresponding to this mode. never the eigenfrequencies are too close to one

another.
Most experimental methods are based on the

S. fact that all points of the structure have the With the method developed by D. CLERC [3] appro-

same phase angle when the excitation is appro- priate forces can be calculated directly from a

priate. set of p responses at a given frequency related

to p linearly independent excitation configura-
In the simplest methods, the experimenter tions. Such a methodis systematic, it takes the

proceeds tentatively by modifying the level of information from all pickups into account and two

excitating forces and the frequency as best he close modes or more can easily be detected, but
can in order to minimise the force and velocity

,. NU'aa dreat mount of m sea aents and calculus s

phase difference for all points. A method based required to determine one eigeamode.

on this principle was tested by LEWIS and .WRISLAT

[1] at the M.I.T. in 1950. TRIAL-NASH (4] had already used a less sophisti-

cated form of this idea as early as 1958 .%
A. DECK. 2] from the ONERA has developed an

automatic method for appropriation which proceeds J.J. ANGELINI [5] introduced the matrix V.P cal-

by successive approximations assuming that fre- culated from the real part V of p responses to p

5%
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linearly independent excitation configuratins The forced displacements of the damped

stored in the matrix F. He takes advantage of system can be decomposed on the basis of the ei-

the vanishing property of the TVF determinant genvectors y. or %, of the associated coserwa-

when the excitation frequency is similar to the tire system. Then, we obtain 3

igenfrequency. Such a method requires a great y().70Ty.f or YOL)-ZQ Z.f (5)

deal nmber of measurements and only takes ac-

count of displacements at the excitation points. with. 2 -(A-Z JA) "' or W a( r -A v +Jdb)-1(6)

Such methods have obvious drawbacks resulting ei- 0 - TYBY b-TZz u I0 UC(7)

ther from exploitation (number of measurements

required) or lack of efficiency (eigenedes unde- where 0 and b are the normed and nam-normed gee-

tected in the case of close frequencies). ralized dmping matrices.

The aim of this paper is to develop a pro- 12 - Determinatio of appropriat forces

cass allowing all the eigenmodes near the excits-

tion frequency to be located, then secured from It is known (6] that a linear self-ed-

a limited set of measurements. joint system can be appropriate to an sigm cir-

cular frequency % with a system of forces all

i - Preliminary considerations in phase (or anti phase). For eemple. at the

In forced haronic conditions, the ovecircular frequency to , the movemmnt is described

ment of a discrete linear system is defined by by :

the equation : (K-XANJ B)zmf

*" BF + k f -.ej~t•(,) if Buz . % - % (K-vI v - O thn

M, S, K being the mass, damping and stiffness ma- AVBZ.V=V or still

trices respectively. JATZBZ e - JVVb %-TZ .

y ea t, leads to f".j VTZ-I b'e TfIe-  ()

(K - W2M + jwB) y _ f (2) If b is diagonal (Basile's hypothesis
verified [7]), this force fv Vill excite an igs-

To the damped initial system, we can asso- nd which is out of phase in relation to the ex-

ciate the conservative system defined by the ei- citation whatever the frequency.

genproblem
Let a - Z . c

(K- M) yinO, =u2 ,

At the circular frequency 0u, the res-

from which we deduce ponse a to the appropriate excitation will be de-

- the modal matrix T of eigenvector yV finad by a

- the spectral matrix A of eigenvalues IV (K-MtJ JA)Z - fV

According as the eigenvectors are arbitra- hence

rily hormed (%) or relatively to the amess matrix TZ(K-XWJAB)Z.c a JAb %

(yv), we obtain the classical relations s

T Vh S. I KTA, zT mm' , TZ (Z = U . A.. Y y %

where u is the diagonal matrix of the generalized Yw - * +  bw %

masses, y that of the generalized stiffness.

6
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All the points of the structure vibrate in 0 0

phase. Th. phase difference 0 between the move- 0 0

mat and excitation force is defined by • -h d
.. feN.I/ OV which loads to YY. fV-A OV

ts A,, - (9)
1UVYV -: 0 0

Reciprocally, asuming that a real force

vector f is found, whose response to any circu- Such result multiplied by an arbitrary cons-

lar frequency is taut is the same as equation (8) because TY-1 -Y.

y - IOTT . f - Vf f j£ Consequently, if a force f can be found so

that V.f o kW.f, this force is appropriate to an
with V . f - k W f, and k - real constant, eigenmode of the structure, and the displacement

then f is an appropriate force to an eigenvector. y is proportional to this eigenmode. This proper-

Indeed we have ty constitute the basis of the appropriation cri-

terton suggested.

V - y R (1) TY a (0) real part offl

V a I J () Ty J () imaginary port of 0. k can be a double oigenvalue

9 diagonal matrix of general term k - . A A(,

V V A00
(AuV_)2+B 2  In that case two linearly independent eigen-

The above equality V.f
-k.W.f leads to vectors will correspond to this double value of

D I.0 0

D -()V-))
2 +A'I 2 DXX) Y-• Ty.fV ,, a and Ty , f•" °

Mltiplyig this equation by [1 D1Ay.O-a adeotan * V9 %jo

1e obtain : o0

L0 - -
(10) The force f found will then be fV or or

'V more generally a linear combination of both.

Therefore there is an eigenvelue AV such that Such indetermination can always be erased by se-

x -
V  lecting another excitation frequency.

IVV

The corresponding eigenvector is of the 13 - Appropriation criterion when Basile's hvpt-

form thesis is verified

0

o p excitation configurations linearly inde-

pendant can be applied to the structure in p

T y points at a given w circular frequency and the

responses in phase and quadrature with the *xci-

tation in n points be noted. The responses in

phase and in quadrature as well as the forces
Therefore, f is proportional to the appro- can be rearranged under mtrix form resulting in

priate force to the v gth esinmode. For instance matrices V(np), W(n,p) and F(pp) respectivly.

Sf V is defined by t We can assume for instance F,,, E being the uni-

7
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ty matrix. (12) is an sisenvalue problem in 6 non-linear in

With such linear system, a response to any relation to the parameter k. It suffices to find

vector force "a" will be Va + jWa. An appropria- which are the values kv of k making the smallest
te force to an eigenmode will be the vector It %t eigenvalue 6 minimum. To each kv there is a cor-
such that responding eigenvector "%v " which is the appro-

th i
priate force to the v eigenmode. We check that

av the equation (13) is satisfied for each solution

In the case when the matrix of applied found.
%

forces F is not a unity matrix, we can measure

responses in phase and quadrature V and W where 14 Form of the appropriate forces such that

each column is a linear combination of the V and V.a - kW.a when Basile's hypothesis is not veri-

W colums. we can therefore write then, under the ied

om WcatIn this case in order to obtain V.a.kW.a at

V and W . . ,complex forces FR+jF must be applied.

We can show that the generalized forces appro-
We try to find the values of k such that priated to the vth eigennde defined by

% k a for instance TZ(+ jFi) fR + fi

are of the form

An appropriate force in this case is equi-

valent to For simplicity, we now assume -/Ab kIVhbIV

that -kb2v kAb2V

fF "/Xb +k -Ai) f.- b

In practice, we strictly cannot guarantee R VV VV VV i VV VV 'jV

equality (1). We try to find the vector "a" and 
(14)

the scalar k such that V.a - kWa = e is minimum. k,/bn

TV TA T~
Let cc - a (v kW) (V - kW) a

To minimize T it is necessary to compare k can be choosen such that fi is null when b is

T to a norm taking into account the amplitude diagonal. If for instance

of the movement. We are led to minimize the pa- k a1vv - Aw  X " 'X
-- -(15)

rameter 6 . v bV V V

cc Ta(Tv.k.W)(VkW)a  The generalized forces are then written

Avail + Ilwall T (TVwVTW)a bI bI

The extremes of 6 are given by the zero of b2 v b2v

the partial derivatives 3 O, i-I .... p and

36 1

3k . 0 which leads to

TV-k (TVTwv) +k2 TWW-6( Tv+T )]a-0 (12) fR v b(+k
2  fkV 0 (16)

TVT
a Wa *,

"' k y aV (13) "i
Ta bnv b

W W Wh~h

.. V N,
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In practice b iv(i 0 v) << b , furthermore k, the eigenproblem (12) can be solved and a

in the proximity of X # V , k # 0 * Consequent- new value k' of k calculated from the oiSanvec-

ly, the imaginary force is negligible compared tor obtained using the relation (13). The value

to the real force, and the appropriation crite- k'0 obtained is very close to a k. value with 6

rion suggested may be applied at the proximity minimum. The value k can be obtained rapidly

of X - ' even when Basile's hypothesis is not through iteration.

verified.
In practice, two or three iterations are

sufficient to obtain fairly accurate values of
II - PRACTICAL CALCULATION OF APPROPRIATE FORCES kv.

21 - 6 = f(k) curve plotting. The method still gives good results when

The calculation is carried out as followsl81: two eigenfrequencies or more are close or equal.
" Given a k °0 value of k (for example ko - 0), the Two k values or more are found to which two ap-

values of 6 solutions of the eigenproblem (12) propriate forces, or more, are associated.

and the corresponding eigenvectors are deduced. The relation k - shows that even when

Then by increasing k and plotting 6 - f(k). We We
get the diagram : (ig. I) two eigenvalues X and A are equal, we still

have two separate values for k if o0V/goM. Any

combination of the two obtained vectors is an
6igenvector. The two determined eigenvectors cor-

respond to the two modes for which the damping

coefficient 0 V is minimum.The above relation

also infers that it is possible to obtain a

double value for kc even if A al 0 X V.in this

case, two separate values for k are obtained by

changing the excitation frequency.

__ . _ _ _III - CALCULATION OF MASSES AND GENERALIZED DAN-
kI 2  k k PINGS

FIG.1 Cu.ve 6 ,.f(k)
The circular frequency wv = V generali-

zed mass jivvan the damping 0 have to be determi-
For each value kv of k with 6 is minimum, ned for each eigenmode.

there is a corresponding force vector F t aetapg-
propriate to an eigenmode of the structure. Fatn

is proportional to the eigenmode. calculating the appropriate corresponding force

av, we apply this force to the structure. A step
The appropriation to a mode is all the more to step predetermined frequency micro-sweeping

accurate as the corresponding value of 6 is smal- device records the system complex responses:
1cr.

Such calculation is comparatively long and Y(W)- YR( )  + Yi ( ) ",
entails a lot of iterations to obtain a kv with
Sminimum. 31 - Eigen circular frequency WV and generalized 0

damping 0 determination.
A quicker alternative can be smmarized s .V6
Aolw quikea beitar inita alues Using the following method to determine w.

9-
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and OWwe obtained fairly satisfactory results. due to error effects in measurements and (21)

For a set of value of A t ~he app - enables one to obtain uiV accurately.

priate force% is applied and

Tit Y -T is plottedk() yi - Yi 0 . VV k

Then k(k) - gives A - XV and the slope

of the curve k(A) gives the generalized damping P aVaV

dk I hence 0 (17)

VV VV

32 - Generalized mass determination

Generalized mass and damping can be obtai- P.

ned by the diagram of complex power [9] PR and
as a function of A ----..--

R %P= -a . Yi FIG.2 Cukve k(X) and comptexpowA

For A AV , it is known 141 that

Pi ('v - X)v (18> 33 - Applications of the suggested method. ' Pi (2 v - € ) bw"(19)

S( V VV ( Experimental checking of the method has
7.

Hence for A -IV been carried out at the ONERA [10]. Fairly good

dP R  results have been obtained using a plane sub-

- vv' (20) structure. Obtained results from numerical simu-

lation by the finite elements method of a system

P, --bW V- iV B /V from which having close natural frequencies, are given here.

P. This system is a clamped, free beam folded up as

11W - 1 (21) shown Fig.3. It can be shown that such a struc-
VT VV ture evinces a succession of eigen-frequencies by

A simple geometric diagram allows to check pairs.

the coherence of the results obtained (fig.2). The eigenfrequencies in each pair are all

The experiment shows that the closer as 11-12 gets smaller

. The curve k(A) (17) provides accurate va- 1
lues for A and 0. since all the points where

pickups have been placed are taken into account.
2_______

- The values of "VV and XV given by (20) 03( 4
~R • 3

:act that -T varies very quickly in the proxi- FIG.3. Fo ded beam d0)o exampft

mity of A-A ;

- The extreme of Pi is slightly modified The first four eigen-frequencies of the i

104.,
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system are n odes can be computed.

FI.13.1 F 2-13.3 F3=119Hz 74 120.8Hz Force aI appropriate tothe first eigen-

In th finite elemnt mth, tree de- ode is computed at an excitation frequency

grees of freedom are associated to each mode equal to 12.13 Hz. A microsveeping from foll.9Uz

(transverse, longitudinal and angular displace- to f12.3 Hz gives the following curves (fig.S)

ments) which leads to a 12 degrees freedom sys- for k, Tava, TaWa .-

ten when four elements are concerned. Similary, force a2 appropriate to the se- ,

In the generalized damping matrix introdu- cond eigenmode is computed at an excitation fre-

ced the value of the quality factor Q=/OVV quency equal to 13.27 Hz. A microsweeping from

of all nodes is 20 or about and coupled termes f13.1 to f-13.5 Hz gives the results in fig5.

are added between the first three modes.

The submatrix 8 is represented below k r i

k2
4.05 -0.54 -0.27 k2

- -0.54 3.24 -0.81 0.3

-0.27 -0.81 27

The simulated testing was carried out as

follow : at a given frequency, responses to

forces equal r I applied successively to each

transverse degree of freedom are computed. The

responses are stored into the V and W matrices

from which k - f(A) is plotted.

The following graph is obtained by selec-

ting an excitation frequency between the first

two eigenfrequencies (f = 13.2 Hz)

FIG. 5 k(A) Ad comptex powA. god" I and 2

0.2
The generalized parameters of eigenmodes

aie obtained from relations (17) and (21). The

K _ J_ following table allows the computed results to

k k2  0.3 be compared with the exact values. w, , 9, Yi

FG.4 Cuuvu 6 - (k) are the circular frequency, the generalized

damping and mass the displacement and the rota-

tion of the ith cross-section. It can be seen

The two parabolic curves 6 = f(k) clearly that results are obtained with good accuracy

show that the system has two eigenfrequencies though the two modes are very close and strongly

located on both sides of the excitation frequen- coupled. It has also been verified that correct

hcy. Ten the appropriate forces to the two results can be secured when error effects in ma-

L"m . 'I. V W - .m --



suresment. are simulated. IBLIOGRAPHY

First Mode Second Mode
[11 RBEURT C., LEWIS and Donald L IUEISLAY (MIT)

Exact Computed Exact Computed A systaim for ths excitation of pure natural
Values Values Values values

modes of complexe structure.* Journal of As-
w'6775 6775 7000 7000 ronautical sciences - novembre 1950

B 4.05 4.17 3.24 3.26
pi 2.05 107 2.1073 0.1g, 0.183 (2] DECK - Contribution A l'6tude d'une mlthodo

seni-automatiqus d'appropriation - Note

yj-11.4 -11.1 332 332 technique OHM - 9*129 (1968) CEA - 92320
#10.130 0.128 -1.39 -1.37 Chatillon (France)

02728 0.1 -3.2 -342 (3] CLERC D. - Ume mithode d'appropriation des
260.12 0.26 -16.27 -1.24 forces d'ezcitation aux modes propres non
033 062 2.2 -0.59 -1257 mrtis d'une structure - Recherche Aerospa-

74 8.63 8.65 14.6 16.6 taen5(91

1# 0.13 0.13 0.07 10.09 [4] R.W.flIAL-KASU - on the excitation of pure

natural modes in aircraft resonance testing,
IV - CONCLUSION Journal of the Aero-space Sciences - dicemr-

bre 1958 (pp.775-778)
* The suggested method has been tested twice

on a numerical comuter, adding simulated errors [5] J.J.ANCELINI - floe nouvelle m~thode de me-
of measurements and on plane substructure [30]. sure de formes uodales des structures aero-
Even when two or more neighbouring eigenfrequen- nautiques - I~me Congr~s International des
ces are very closed together, the appropriate Sciences Aeronautiques - Ottawa 3976 (ICAS
force can be esely calculated and the eigen- paper n*76-27)
modes restored with a negligible amount of er-
rors compatible with measurement accurary. (6] 0. DANEK - Referenci buzeni. Proceedings of

the VI hConference Dynamics of Nachines,
As a conclusion, the originality of the me- PRAHA - Liblice, september 1973

thod can be sumarized as follows :a single set [7R.BSL- ST d nitrdola.
of measurements with given frequencies enables(7 .AIE-PS..dNnitrdelir

one to determine the appropriate force with se- Colloque international do NMcanique, POITIERS

veral eigeiodes, and the determination of the (1950)

values of k such that 8 is mtinimum enables ones (8] R. FILLOD, J. PIRABDA Etude d'une m~thods
to locate these eigenfrequencies ;d'appropriation des syntias lindaires. Pro-

- multiplie or neighbouring are autamatical- ceedins of the vin th Conference - Dynamics

ly detected even though eigenmodes are strongly of Machines, PRAB&,Liblice, september 1973

coupled by damping ; [9] E. SONAU - Determination des caractiristi-

- if ws agree to make a few measurements in ques vibratoires d'uns structure A l'aide de
the proximity of an eigenfrequency, the diagram l'ezpression de la puissance complexe fournie
in function of A of k, PR and P eables one -to Recharche Mrospatiale, n0130, juin 139

4 determines

- the eigen-circular frequency uW. [10] NGUR Loan Thanh-Restitution par calcul des
- the goeralisbd damping 0 modes propree I partir d'excitations non ap-

- the generalized asapw propri~es.Note tech. ONERA n*1975-9.
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CALCULATION OF NATURAL FREQUENCIES AND
MODE SHAPES OF MASS LOADED AIRCRAFT STRUCTURES

P. Wayne Whaley
Air Force Flight Dynamics Laboratory

Wright-Patterson AFB, OH 45433

Aircraft optical packages are SorosdI by fte local random vibratiai response
characteristics of tie airfrmc. Humic, die vibration characteristics anst
be known by die designer of optical pakages. Homr, since the siviran-
mt changes with the addition of the electro-optical "sem it is neces-
s to predict the modified vibration anixuawt, eihr by fligbt testing

mass siniulation. or nciucting structural analysis. Ida paper pose
tda Problem of loaded rando vibration response esimation using Gl@3 u-n'a
method, a direct medwd, and a generalized coordinates approach. Pesults
indicate that bodh dhe direct madrid and dhe gsalised coordinates solu-
tion give very good estimates of tie first fourmdes of a me loaded sinply
m~iported beam, with dft generalized coordinates solution giving better ac-
curacy dimn dhe direct method. Gslexldn' s nietbod gives uiaobl* results.

* In addtion, A matrix iteration aduom for ocmqxting loaded modes, given
imlade nuesin presented. Results show diet oe 5MX reduction In

execution tims is Possible In crapuing die first fairwnd. with @Dod
accuracy maintainied.

RDM MI Finite elusaKt malysis is frequstly
usemdtocmpt the loanded random vibration

In dhe dehign of airbozuie optical pac- rsoeofaircraft structures. Iaver, us-
ages, the angualar and rectilinear vibration less a finite elemnt nodel already exists,
reson= characteristics of die airfr-ame repre- sucth a proess would be time conming. Even

-tteizyut forcing functions to tie optical if a finite elmeet no~dal did exist, die mmer
systess (ll. linice. it is necessary to collect Of -ms loadig would hae to be Included and
vibration data for the aircraft structure on possible matrix sime reduction techniques im-
wichid dhe optical system is to be mounited. Thie pla.sntsd. In addition, diere are persisutmi
problem with such data is that Installing tie probimia oncerning die choice of ap~riat
optis syste in theairrf may dimig e as'--'-'-b 1ut ss iw a idit
airfronr vibration repnecharacteristics. t mnou &" ight e xpnsvean
*lbeefore, it is desirable to collect aircraft time onsUMIng !in am Instances than conduc-
data with a mass sinilation Installed. How- ting fli&i tests.
ever, when the fli~it test Is condcted, die
optical systm design may not be finalized, so Three analytical tecuniques for cuputng

:i os pporit siulation =as may not he the mass loaded response of aircraft structures
Imcui.In ddtion, unloaded data myalready are opared, to th fiit elnt animer.

be available for die aircraft in =dd case it 7hose analytical techniques are: Galein' a
is myreP desirable to wse excisting data dhan method, a generalied coordinates, approsadi, and
Increase cost by coletn additional data. A a direct mathod based on Hainlton a Im of s
better approach would be to calcuate or esti- varingaction. Tn addition, an alternative
note dfe mass loaded rand= response, us"ng f copu:td loaded repneusing
sone relatively simle procedure, rad=ar finite elmiint : ai and kmivng di Moad-

rel on. intlln mass simulatixis mid dhan ad response is presented.
conucingMomi tests. 'This paper is an

anlssof faiw procedures for c alcltingt dieIas loaded vibration response Of aircraft ANALYMT
structures.

Aprxmations to die solutions of

13
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difficult problms my be obtained by a varie-
ty of mdods. Three am chosn here becaue
of their ease of application to vibratin prob-leas. Gaexd's ,etbod involves assuming a

soltion, substituting the assued solution
Into the omizinal differential equations to , _

dafins a esicka then setting the Integral of 1

this residue to nr o. 7he aUsd coordi- Fig. 1 - Mies loded shply suylred bum.
nates aprach Is based on the fact that a pa6tial difreta equation may be transformed
into a set of ordinary differential equations.
he o na differntial equati re m erlize Coordinat

solwd in my avalable m er. 7he direct
medod ge its m ha t h By d S coardte as In
differntial equations am solved; ei-walu0 s Eq. (4), a st urs d -be d c-
and elenvectare ae obtaind directly fuzie In a r P= = y = t Cot&-

* nrv'.equatons. Details of the dervatioms tim.
are given below.

Galarldn's Method y(x,t) u. q #i(x) (4)

The diffemtial equation for the systea
of Fig. 1 ty be divedby utilizing T Eq. (4),
Hamltm's principle. he kamutic and poten-
tial enar empressiws are used to define a j(x) are te nods shapes
u=dified tspgriui density function.

-~ 2f) - 4Y ame the generalized coordinates.

UsingElq. (4), the equation of mti for F.1
fp!3L 6(x my be Writtent as

-~ky- NO, ( ) ("-" +%t (XoA. #:s)O

(2)

2 2()

NOR xe \db, ) +M(X0 ,t) .(XO) )

Applying HaLltc I a p rinciple to Eq. (1), the (
mTingd e oqutiani Of tl uis Mi ths d.-

s-E,, 0 a- Z "ijxd _ M(V L

(2)

An aprsete solution to Eq. (2) saw be M(x,t) - -MOR E )
assumed. (Sse Raf. (2]. ) -

dusen t mhustitionsmi in Eq. (5) and
y~m(x, t) - hshdT sin ot miea1* 11te terms, the coeffioiits of q.

Since this is am approxdiete so xdcn, sudstl.- tim th
tuting Into Eq. (2)will not gi'esmbti waK+ N is ~+iR 2  V+ Ki
set equl toareidue. &MIte~tiI~

* 4 resid~a over me cycle fod ticn t
vaiation Of dentga, it is possible to
solve for th nra feqtmia. The loaehd .4CM0l *(z.) #j (z) + M. R1*~ 0 *'I) 0

nat ra - m-- divided by de unloaded nat-
iUl freqmoy s

SInMe Kiftli - 4i for the unloaedd bs.

1 1 dividing Eqs. (6) by K~llea normlized set

4 /R 2 . )(3) ratio .i /w Since fths ratio is close to onJ0\ 14 02 in 1 2w for m! sly bloid structure, die frepqiy
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ratio cm be set equal to for the off- Assumig y(x,t) - sInT sin wt, Sq. (7) be-
_AMVMj asa a fiyr Vwaximtim. 7lds Com

y s~d tc e O, prb, given In Sq. (6).

A nA A 4--A l q , 0. L(s n ) ., t h _

1 2 q2, o

A31 I to oIxI I o

I I - I (6) t-

I I - I' 2 (h-

-- - -(8)

[1.l + i (Ze? +m',0 ( ) A 2 (n=6) in j t & ,jt

(Wa ~:-to

Ahij n1 fodi- m le . Iti d I -LO

odfor 1 to L

Eqs.(6) result in an sigovaliu p Obrof t

r dieret es b,, on a conept By inistigat not be zero nd Itegra-
ImmmmeSmilons ~wofv'8 t ) o er ncylrm 8)bcmeter

Oft Eq [41 for dcarng). is sited gwm i.g !e intoatlad dividing by
in Sq. (7). we am. mu

ahto (-V)dt - 6y 1to - 0 (7) 1+W sin 2  
(9)

T and V e +() 0
T 2i d + M(x-- o) A finite el zt analysis of the siply

ip'+ I I W(xx 0 ) suported beam ws cmukwted In order to deter-
.dre the accuracy of the various nlyticl

tedu premted hre. A bean with 25 r

2points including tranvrs and rotatimal de-
2 12 )2 flections at ead grid point we modeled using

+ -- 6 a (X-xo) dx finite elments 61. 7he finite element an-= kit') oJ alysis wsed for ompariwo to ths analytical
results yielded accuracies for the unloaded

L 2 s~pyspotdba slisted In Table 1.
/gayhe added hs don as half the bean niss,

v EV-1 El dm. and the radius of gyratlion as five percent of
I the bew anugth.

IN'

' o .. *~ lx w w wn -n.
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S a.
TABLE I. natural frequency divided by the uloaded

Accuracy of Finite tna al vers normalized
cr oF t u tposition of the added mass. Fig. 3 show that .-.*

the generalized coordinates mth ies re- ,..
Exct Finite Elemt sult %*dch are almost idtical to the finite

bde Solution, Hz Solution, Hz elemet solution. Figs. 4 and 5 show plots of

nrimlized natural frequency vesus normalized
1 664.05 664.05 positic for third and fourth modes. For third

mode, the generalized coordinates anm r is
2 2656.2 2656.2 almrt identical to the finite elemnt answer
3 5976.5 5976.6 uhile the direct method is in error. For the .

fourth mode, the generalized coordinates mx-
4 10624. 10625. swr is In slight error, but still much better
5 16601. 16603. than the direct mthod. From Figs. 2-5 it

23906. 23912. appears that the generalized coordinates solu-
tion9 gives better results than the direct

t, m od for loer modes, with both methods In
greater error for highr order modes. Table 11
shows uedmex error tabulated for the direct
mthod and generalized coordinates. Tm direct

Fig. 2 is a plot of the loaded first method is as good as generalized coordinates
natural frequency divided by the unloaded for lower modes, but is in significantly
first natural frequency versus the normalized greater error for hipier modes.
positim of the added mass. Ten modes are
considered in cmputing the first loaded nat-
ural frequency by generalized coordinates. TAKE II.
Four techniques are used in Fi. 2 to computeot D c"md h
natural frequencies: Galerkin s -mthod, gen- M mum Error of the Direct Method and of the
eralized coordinates, direct method, and a Generalized Coordinates Analysis
finite elemmt solution. As seen from Fig. 2, L

p, ~generalized coordinates and the direct mthod *Pecn

both agree very well with the finite element
solution. Galerkin's mthod is in consider- Mbde Direct Method Generalized Coordinate
able error and is felt to be inappropriate
for this analysis, and is therefore omitted 1 .02 .04
from the rest of this discussion. 2 .046 .037

3 .5 .026

4 .71 .003

In summary, of the three analyticalmethodexmined here genrlie coordinates
mthod gives the best accuracy in coaputing

"=naturl frequency. Genrdze coordinates

analysis has potential for three important
r..=n (1) A complicated structure my be

analyzed in terim of ni ordinary differentialMS'; equations, where n is the number of modes

required, (2) 'fle matrix sizes can be muchsmaller since only dose codes ditch lie with-
I a.In the frequency band of interest need to be
S included, (3) Using generalized coordinates,

-on need only know the modes, therefore
n-gating any need to model any but the local
part of this structue of interest. If am

,!:: mcan-eas,, modes using on of th meay avail-
FIRM ' L.',L=r,= able nodal analysis Ldni-coputer systms then

there is o reed to be oncern with boundary
0. no,, ,a ".O ".. conditions, and it is possible to analyze only .N those subsections of interest in the airframe
g.2-First natral qumcy ratio [5].

plotedverusadded mass positioni by p

4, teeum Ho -0. 5OpL,
R - 0.05L.

" .." .% 5, .,.
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For the analysis Siwn hue, do loded
riod eshope is am d to be the am as d m-
loaded modo ships. While for mderate lhomdin
omditims this assumption is a ptable, for
lzrmr added moss that asumptim fails to be
;.Hnce. , ~os toa d~omzamg of the

anaytial ethdispresnted here. A tedmique
MUiid Utilizes correCted uz~ds shape iformicn
is included In tha nm sectin.

I.
La. .

LU.. ...

i MINI--gll~~ 
, nlI

00

..U Fig. 5 - Frth naurlt1 k ratio plotted

.-.,wlff, CI,,..NE versus added meas position by two

A0 ED..5 .O.i

Fig. 3 - Second natural frquey rato plotted
versus added mass positi by ta mapo IbAy tt
m eth ods ; o 0 .50 pL , R - 0 .05L .m x r n

* nthds H -O.0p, -O.5L un ttix iceration edarne ueed here ILsI

the powr mohod using mtrix def .tion [6].
7rn mthod is based an the idea that the octor
{ji in Eq. (10) my be obtained by dIocering an

%AI. nitizl estheste and substitut~ng into the
left-hind side of Eq. (10) rpeatdlay umtil both
sides of Eq. (10) apse.

I.U

MDC71 1 N CI0)
br

10M. H~ order mo~des cam be solved once the 1~m
M~G r nw by using Eq. (U).

(D11 DK" ] I - {u} U)TM }(U2 1 ( )

""U "--i Ui U £' - ,,, - m iX { - m {'J}1

Jb
9. .~. ~ O~k . ~ M~trix iteam gay thus be used to ompute se

my umde shapes aid natural frequis so an
Fig. 4 - atird natural frequency ratio plotted desired.

versus added ma position by tw a sdtosl
mthods;M o  0.50pL, R 0.05L. matrixterstmweusdtslvthe
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finite element model of the previous section. In Table III, it tA- are tim to ~ ..
Results of that analysis ae mirized in CoOut E.20 Modes becaue the alorit n re-
Tables III aid IV. From Table I2 it is shown quires iteratin for each mode. For the eigei-
that for conputing only the first few modes, value analyis, h,wmr, tie cost is the ammatrix iteration can yield significant cost for coptn a give rm ner of mdes, ad the
savings. IncreasIg de onvergae criteria nUaber of Modes 1i equal to dhe nubr of
ffects the loer modes by only a few percet, eleens for this finie elemet model.
hisle a ore rigid cmirerguc criterion im-
poves die accuracy of the higher modes. It Frm Table V, accuracy withi- .e for
ay be dhat one sixuld fomulate covergece tie first four nodes is on te order of 1%.
criteria 'hich vary with the modes, d-axding With - .01, accuracy is scu it better,
sore accuracy for lower modes and less accuracy expecially for the higIer order modes, aldwug'
for higher Mo.de. tie sixth mode is still in omsiderable er.

TAK.E Ii.

Cbmarisons of the Camputaticnal Speeds of Matrix Iteration and Eignvalue Analysis

Niber of Matrix Iteration Eiglevalu Execution Percent Raduction
Modes Enscution Time, Sec Tim, Sec

c- . c-.01 -.l c-.01

1 1.7 1.66 4.6 63 60

2 2.2 2.21 4.6 51 47

3 2.8 2.79 4.6 38 33

4 3.4 3.39 4.6 25 19

5 4.2 4.38 4.6 9 -4

6 4.8 5.06 4.6 -.06 -20.

TAE IV.

Cooparisons of dhe Accuracies of Matrix Iteratin with Eigeivale Analysis

Matrix iterationx Eigenvialu Analysis
Moe Natural Frequencies, Hz Natural Frequeicies, Hz Percent Err

£-.1 .- .01 c-.l -.01

1 605.5 605.5 605.97 .07 .07 0

2 2575 2630.8 2633 2.22 .08 %

3 5546 5517.5 5509 .67 .15 :-'

4 10400 10193 10301 -.96 1.05

5 12128 14292 15365 -21.0 -7.0 0

6 86547 10096 22403 -61.0 -55.0

18W
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Accuracy for hijer modes is lowr, because for correction of te unloaded nod shapes to
errors made in computing lowr modes are upgrade the acuracy of the solutim.
add e Nktrlx iteration holds promise since the

In summary, it appears that using matrix nature of the unloaded structure is used to

iteration, in solving the l ade mdeswhen cm advantage. For moderate loaia c nddxs,kosthe unoae modes ca prvide sig -fo- = r~oe is very rapid n olv or the
cat ost savins. Although the ost savings lowe ue. Sinfirt sains In om-r
do not appear to be enough to enable ameto putational speed am dwowtmted with aept-
use finite element analysis to predict the able crrespor ding acuracy. Howevr, it is
vibration awiramut of loaded structure, it felt that using matrix iteration in conjuctim
is significant enougi to merit further conuid- with finite elemint analysis will yield only
eration as a potential application to other limited success. 7hepreparation of data and
analysis tedmiqes. validation of the =e LZ W an C

amount of time for most complicated aircraft
fhe reason for the success of matrix- structures. It is s testd that use of Si-

iterationi is that maxdini advantage is taken of eralized coordintes in ccmJuzctioin with matrix
all that is known about the structure. In iteration should be studied further.
general, matrix iteration is not a com
tcedique since it requires an initial estimate
for te nods shape. Usually, such an estimate
is not readily mvailable and cor of de- LIS F (F S1 0S
pends on the accuracy of the initial "guess."
Howr, in the case of loaded structures an Aij = elements of geWralized coordinates
which unloaded modes and node shapes are knoM, coefficient matrix
that initial "guess" is very close to the final
mode shape, so convergence is wry rapid. An - arbitrary constant in approximate

solution

E - Yowg's modulusCOCUIOMS
F(x ,t) - applied inertia force

A desirable feature for an analytical 0
technique to be used in computing an estimate I bean c - on moment of
of the loaded structural mod shapes from the i era
unloaded, is that optinun advantage be taken
of the klnoi unloaded MOde shapes. TeK - finite elm t stiffness atrix
gested vibration estimation process uite as
follos: (1) Use existing unloaded aircraft geralid stiffness
vibration data w availa be, collecting all li
data without concer for mass simulations.
(2) Measure the necessary modes and natural L = been length
S cdes of the portion of the aircraft to
be analyzed using modal testing techniques. ln- Lagrangfian. density fuiction
(3) Apply a relatiwly simple algorithn to the
unloaded vibration response to get an estimate M - fiit elmnt mass matrix
of the loaded vibration response. Such a vi-
braticr estimation process has =l adverliztages
that design studies are possible for estimating g a s
the best location for the airborne optical
package. 7his iteratie design process would M = sass of added mess load
be prohibitivly expensive when mss simla-
tions must be flight tested. n - nmbber of modes

only one of the analytical techu-ques q nrlz coordinate
presented here appears to have potential in
fulfilling these requiremeits. Galerkin's
method depends an an existing differential R - radius of gratim of added moo
equation, .ulikely for coipliated built- load
structure. 'e direct method depends o
existence of enery fuctions, again difficult T - kinetic eergy
for complicated structure. The seneralized
coordinates approach, hower, depends only an to Initial time
knowledge of unloaded node shapes and natural
freqinicies. Onice modes am known, gsald -final time
elments may be omputed for n natural frequen-t
cies, n second order ordinary differential

aticu result. The problm with all three V = potential energy
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XO - location of added as load nEFKIpS

1. Lloyd, W. B., D. R. logan, and J. Pearao,
'Vbation mtrol of 0pdal Packages in

G k boAicraft," 1977 Nratioal spa e l.eC-
tra ic Coference, yton, H 17-19.

6 - variatdial operator 1977.

6(x-xo ) - dirac delta fnctfon 2. Forray, N. J., Variatioal Calculus in
-Sciee an njjH-%#Y&

cmarixer ato mvreneP M1L
criteri

3. Thonon, W. T., Vibraion 7hor ad
p - bemn ms denity &Li , , Jersey,

= MD&stwpe190, 
pp 299-304.

- 4. Bailey, C. D., "A Nw Look at Nuilton's
Pi - mne stape estimate for matrix Principle," F bdatins of Ryics, vol 5,

iteration no. 3, 1975.

I = matrix iteation i ue, 5. Ridardsmn, M., ad R. Potter, "Idmtifica-
1,- r tio of te M P of in Elastic

Structure hm Muored Tinsfe~r Funtilon

Data," 20thx In:ternatilo Instnurwtatu
w = loaded beam natural frequency Sympoeium, Alquerque, N. M., 1974.

wo - uloaded beam natural frequency 6. Mairovitch, L., Elamm of Vibration
Analysis, Nw yow -,-Tpp15 9- .

wr - frequncy estimate for matrix
r iterat±i

DISCUSSION

Mr. Smallwood, (Sandia Laboratories):
I gathered from the flavor of the talk that
the whole purpose is to determine the change
in the response of the structure when a sub-
structure is added to it. I was wondering
if you have considered the application of
mechanical impedance techniques for doing this
particular job? For example if you know the
unloaded motion of the structure at the
attachment point, if you know the mechanical
Impedance of a substructure that you will attach
to the structure, then you can determine the
motion of the interface with the substructure
attached to the principal structure.

Mr. Whale: I haven't looked at impedance
techniques particularly for this problem but
that has been done by our group. Captain Bob
Davis did some of that on an aircraft to predict
its response once the laser was installed.
That sounds like something I would like to
pursue.
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ROCKET MOTOR RESPONSE TO TRANSVERSE BLAST LOADING

eNorrts J. Huffngton, Jr., and Henry L.Wtsnhewske
U.S. Army Ballistic Research Laboratory

Aberdeen Proving Ground, Maryland

The effects of propellant inertia and of internal pressurization on the
structural response of solid propellant rocket motors subjected to
transverse air blast loading have been investigated, both analytically
and numerically. The numerical predictions were accomplished using the
BRL version of the PETROS 3.5 computer program, which employs the finite
difference method to solve the equations governing finite amplitude
elastplastic response of thin shells. The response of a typical rocket
motor configuration was calculated for the limiting situations of the
bare motor case and of the motor case containing the complete propellant
grain, each with no internal pressurization and with the pressurization
resulting from propellant combustion. These calculations showed that the
unpressurized motors experience a much larger deformation than the
pressurized motors for the same blast loading. The most significant result
is the quantification of the greater vulnerability of rocket motors prior
to their Ignition, whether on the launcher or as upper stages of in-flight
missiles.

INTRODUCTION of an entire motor case including head and

nozzle. However, the results to be presented
This paper is concerned with analysis of in the sequel were obtained for a plane strain

the vulnerability of solid propellant rocket cylinder in order to provide a comparison with
motors to air blast loading in combination with results to be derived by the finite element
other operational loads. In treating this analysis cited above.
subject It is appropriate to consider the
methodology currently being employed In the The representation employed for the blast
design of motors for interceptor missiles and loading includes both the diffraction and the
artillery rockets [1]. This methodology may be drag phases of loading since both phases con-
characterized as a quasi-static two-dimensional tribute to the response to nuclear blast.
finite element modeling of longitudinal and Nevertheless, the methodology is equally appli-
transverse slices through rocket motors cable for predicting response to blast from
supplemented by a one-dimensional treatment of conventional weapons.
radiation-induced stress wave propagation. The
Ballistic Research Laboratory is monitoring the The first author has also obtained an
augmentation of these finite element codes to analytical solution for the effect of internal
permit a plane strain analysis of the response pressurization on the vibration frequencies of
of a transverse slice of a motor (including the elastic plane strain cylinders. Although the
viscoelastic propellant grain) to side-on blast details of this analysis will be presented
loading. elsewhere, the insights derived from this solu-

tion assist in the interpretation of the numer-
Additionally, the authors have conducted ical results acquired by use of the PETROS 3.5

a parallel investigation of this problem using code.
the BRL version of the PETROS 3.5 computer
program [2], which employs the finite differ-
ence method to solve the equations governing PROBLEM DEFINITION

* finite amplitude elastoplastic response of thin
shells. Although this computer code cannot When resorting to numerical analysis one

%I model the behavior of the propellant (except must naturally assign values to all parameters
in a lumped mass manner to be described) it appearing in the formulation. The values
does have the capability to treat the response selected below are not identified with any

* 21.-'
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existing system but do fall within ranges of is being modeled as a viscoelastic material in
practical interest, the cited finite element analysis, the lumped

mass treatment of the propellant in the PETROS
A. Rocket Mtor Parmeters 3.5 calculations required use of only the

A representative solid propellant rocket propellant density.

motor cross section (see Fig. 1) was selected B. Blast Loading Model
for exercise of the PETROS 3.5 computer program
In its plane strain option. In addition to the The blast loading is introduced as a plane
geometric data shown on this Figure, the shock wave having an exponentially decny-
material property parameters listed in Table 1 tail, moving down from above as shown in FIg. 1.
ware selected. The steel motor case was Although surface overpressures p(e,t) obtained
assumed to have the linear strain hardening experimentally or by refined hydrodynamic
uniaxial stress-strain characteristics show calculations can be readily Introduced into the
in Fig. 2 and to exhibit no strain-rate effects. PETROS 3.5 code, it is convenient to employ the
Bi-axial plastic flow was analyzed using the following functional representation for the
von ises yield criterion and the associated blast loading which includes the essential
flow rule in accordance with the mechanical aspects of wave reflection, diffraction, and
sublayer model [3]. Although the propellant post-envelopment drag loading:

0 for t <

p(et) - [Pr se + ps(1-cose)]e "6 (t -ta) for -91 e < 906 (1)

( "(t-tgfrg<6 l8 for t o taps•  for 90o < 101 -C 180,

FAW

(6" I (.

/
6.3 m. (0.250") CASE THICKNESS

Fig. 1. Rocket Motor Cross Section
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TABLE 1
Material Properties

Motor Case (Steel) _ _ __ _ _ _

Young's modulus Ec  a 200 SPa - 29 x 106 psi
Poisson's ratio vc  - 0.3

Yield stress go  a 483 MPa - 70,000 psi
Mass density Pc = 7860 kg/m3 a 0.000736 lb sec2/in4

Propellant (Viscoelastic Solid) .. "

Young's modulus Ep - 689 "Pa a 100.000 psi

Poisson's ratio vp a 0.472

Mass density p 1660 kg/m3 - 0.000155 lb seC2/tn

u a Ofl+7  (3)

to R - cose) (4)

While response predictions have been made for
several values of incident overpressure, the
results which follow have been obtained for one-IS -.02 -.0I .01 .0 .00 level of blast loading, the parameters for

SmAIN which are listed in Table 2.

- TABLE 2
Blast Wave Parameters

Parameter Sl Unit% English Units

Fig. 2. Postulated Uniaxial Stress-Strain ao 340 m/s 13400 in/sec

Curve for Motor Case Material PO 101 kPa 14.7 psi

where PS 79.3 kPa 11.5 psi

Po a ambient pressure U 440 m/s 17300 in/sec

ps side-on overpressure of incident shock 4.35 s1 4.35 sec "1

P a reflected peak overpressure Pr 207 kPa 30.0 psi
ao - sonic velocity at ambient conditions
-- 0 The value of the decay coefficient i was

U a shock front velocity estimated from blast data curves [4] for a one
kiloton nuclear weapon.

t a = rrival tim of shock front C. Internal Loading
R -outside rrdvus of cylinder

ot r o lIn addition to response predictions using

0 n decay coefficient the foregoing external loading, which would
correspond to the pre-ignition response for the

and rocket motor stage under consideration, calcu-
lations have also been performed for cases

(7pO+ 4p5\ where the motor had an additional internal

Pr 2p5  
+ 4p  (2) pressurization p1 (produced by propellant

I7 Ps combustion) prior to this blast loading. For
the most part the value p1 a 6.89 MPa (1000
psi) has been used for this internal pressure.
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although a limited study of the effect of C. Rigid Body Notion
varying this parameter will also be reported.

There is another modeling consideration
which arises as a consequence of the assumption

FINITE DIFFERENCE MODELING that the motor case is in a state of plane
strain. In this stress state there can be no

A. Computational Grid resultant force acting tangential to a cross
section of the motor. Consequently, when a non-

The finite difference grid employed for all self-equilibrating external loading (such as
the PETROS 3.5 calculations is shown in Fig. 3. results from side-on blast) is applied to the
Since both the responding structure and the cylinder a lateral acceleration results. In . .

applied loads are symmetric with respect to the order to appreciate the extent of deformation
vertical plane, it is only necessary to model the cylinder experiences it is necessary to
the response of one-half of the cylinder, subtract out this "rigid body" component of the
Further, because there is no longitudinal motion. This was accomplished in the PETROS 3.5 [
variation of any quantities involved in a calculations by recomputing the location of the
plane strain analysis there are only two mass center at each time step and subtracting ,
independent variables, the angles 0 and time, this quantity from the position vector of each
resulting in quite economical computer runs. mesh point before displaying graphical results.

A
NUMERICAL ANALYSIS RESULTS

A. Unpressurized Cylinders

in Fig. 4 the undeformied cylinder cross -

section of the bare motor case is compared with
that at 30 ms, which is approximately the time
of maximum deflection. It should be emphasized
that in this figure the deflections are plotted
to the same scale as the initial deflection;
i.e., the deflections are large, entailing both
nonlinear geometric effects and elastoplastic

CYCLE 0 <material behavior. The deflected cross section
A corresponds principally to the lowest frequency

A-A Oms flexural mode for a ring or cylinder (the n - 2,

Fig. 3. Finite Difference Grid s = 1 mode, see Appendix). The deflection
responses of a point on the crown line (8 - 00)

B. Propellant Mass Effect of cylinders having no internal pressurization
are shown in Fig. 5, for both the bare motor

In the finite difference equations of case and the motor configuration of Fig. 1
motion for the mesh point at 6e (m -integer) (where the effect of propellant mass has been

included as described above). As expected, the
the mass is that of the shell (motor case) effect of the propellant is to reduce both the
lying between the radial planes at angles amplitude and frequency of the response.
(e M-1 * emV 2 and (em + ea+1 )/2. When it was
desired to take account of the mass of the INITIAL
propellant in the response prediction the mass CONFIGURATION .
of propellant lying between the same two radial .. , I

* planes was added to the motor case mass at e.'m
Therefore, the effective mass will vary as a
function of the discrete angles em owing to the

slots in the star pattern of the propellant
grain (see Fig. 1). It is recognized that this
procedure provides a rather crude approximation
to the propellant mass effect since many two-
dimensional response modes are thereby inhib-
ited. Nevertheless it appears to be the most
rational procedure which does not entail ex- DEFORMED <
tensive modification of the shell response code. -a CYLINDER
The resistance of the propellant grain toV
deformation is also neglected in this modeling,
an approximation which may not be too serious %
owing to the relatively low strength of the CYCLE 1250
propellant in comparison to that of the steel 306 %

motor case (see Table 1) and the weakening
effect of the slots in the propellant grain. Fig. 4. Deflection Pattern for Unpressurized

Bare Cylinder
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-60
' ' -2.4

'-WITH PROPELLANT
WITHOUT PROPELLANT -2.8

-0
0 40 s0 120 160 200 240

TIME (ma)
Fig. 5. Deflections at e - 00 for No Internal Pressurization

The predicted circumferential strains at the motor case) are nearly symmetric with
the crown line are displayed in Fig. 6. Since respect to the zero strain line it may be in-
the curves for the inner and outer surfaces (of ferred that the response is mostly flexural,

.6

WTOTPROPE LLANTiWTOT-

.2

S INNER SURFACE ,:'T s

' OUTER SURFACE

.-

-. 4.

-WITH PROPELLANT

-.6 >

0 40 s0 120 160 200 240TIME

Fig. 6. Circumferential Strains at e 00 for No Internal Pressurization
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Fig. 7. Acceleration at - 0 ° for Unpressurized Motor Case Containing Propellant
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Fig. 8. Acceleration at e - 1800 for Unpressurized Motor Case Containing Propellant
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which is consistent with Fig. 4. Similar respectively. Tensile interface stresses are
strain variations were obtained at 8 a 900 and associated with positive accelerations at 6 - 0°

180*. At 192 ms, by which time all plastic and negative accelerations at 0 - 1800. The
deformation had ceased, the external load was maximum of these accelerations is -496 m/s2

removed and an artificial damping was introduced (-19500 in/sec2) corresponding to a tensile
to rapidly dissipate the remaining kinetic stress of 80.2 kPa (11.6 psi) at e - 1800.
energy. In this manner it was possible to While interface stresses of this magnitude
identify the values of residual deflection and should not cause debonding of the propellant,
residual strains indicated on Figs 5 and 6, conclusions regarding bond failure should be
respectively, deferred until the results of the two-dimen-

sional finite element analysis become
For the motor case containing propellant available.

it is also of interest to estimate the normal
stresses acting at the interface between motor B. Effect of Internal Pressure
case and propellant. This can be done in a
manner consistent with the lumped mass model by When treating cases of cylinders with
multiplying the element of propellant mass internal pressurization (due to propellant
assigned to a nodal point by the absolute combustion) a quasi-static PETROS 3.5 run was
acceleration of the nodal point and dividing made at each pressurization level to establish
by the appropriate interface surface area. The the initial conditions of deflection and stress
acceleration histories* of the nodal points at extant prior to arrival of the blast wave.e =00 and 0 = 180c are shown in Figs. 7 and 8, These quasi-static solutions, which are plotted

in negative time in Fig. 9, are fully damped

.P " 6.89 MPa (1000 psi); WITHOUT PROPELLANT

pi 6.89MPa (1000 psi ); WITH PROPELLANT

. .- i i 3.45MPa (500 psi); WITHOUT PROPELLANT

1.0 .04

0.5 A- .02

0 . 02.

0 I 'I -' I /
E "Al A o0 If 0

0 I I Z -
= 1 I -
U -0.5
"-9 -uI 1 I II I -.02t-

~-.040

-I.S X.° X, --. 06

, n I n I i I, I i .

-o 0 0 10 2D 30 40 50
TIME s

Fig. 9. Deflection at e- 00 with Internal Pressurization

*The presence of high frequency oscillations in these plots may appear suspicious In view of the ,

rather low frequency deflection response in Fig. 5. However, relatively low amplitude extensional ..-

modes (the s - 2 family discussed in the Appendix) when amplified by the square of their large
circular frequencies (as is effectively done when calculating accelerations) can become dominant in
the manner shown in Figs. 7 and 8. Love [5) remarks that such modes would probably be difficult to
excite. It appears that diffracting a shock wave around a cylinder is quite effective in exciting
these high frequency modes.
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time a 0. The transient responses to the IIILU RSUIE YID1
ebefore the hblastntnloading ieposs inittated hat INITIAL UNPRlEsSURIZED CYLINDER j

standard blast pulse are plotted in positive
time for three cases: the motor bottle with
and without propellant having an internal
pressure of 6.89 MPa (1000 psi), which is
understood to be a representative operating
pressure for a rocket motor, and the motor
without propellant with half the above internal
pressure which was run to study the effect of
varying the internal pressure. One sees that
increasing the internal pressure raises the &
frequency of oscillation and decreases the
amplitude of response (provided the shell
rumains elastic). At the operating pressure V
adding propellant lowers the frequency of
response and has little effect on the ampli- I .. A
tude.

Figure 10 presents cross section views of
cylinder response at two times for the case
represented by the solid curve in Fig. 9. In CYCLE 0 CYCLE 377
these views the departure from the initial Oe 9.048mw
unpressurized configuration has been magnified
by a factor of one hundred. For Cycle 0 we Fig. 10. Cross Sections of Pressurized Cylinder
see the axisynuetric extensional deformation
pattern which exists inmediately before the
arrival of the blast loading. With the 6.89 Cycle 0. The corresponding quasi-static and
MPa (1000 psi) internal pressure the circum- transient strains at the crown line are depicted
ferential membrane stress is 91 percent of the in Fig. 11. Clearly, the blast-induced strain
uniaxial yield stress while the maximum bend- fluctuations are small in comparison to the
ing stresses are less than one percent of this pressurization-induced strain. In fact, in
quantity. The cross section for Cycle 377, spite of the large pre-stressing, none of the
which may be associated with the second inward problems treated in Fig. 9 were predicted to
peak displacement shown In Fig. 9, exhibits an experience permanent deformation of the motor
essentially inextensional flexural deformation case as a result of the blast loading.
superposed upon the extensional pattern for

_______________________ S

.20 ~ M. ~ .,,.46JNER 'SURFACE
.20 -

OUTER SURFACE

.16

CL

Z

S~.12-

~.06

.04

0~

0 10 20 30 40 s0
TIME (as)

Fig. 11. Circumferential Strain at e - 00 for p1 - 6.89 MPa (1000 psi) Without Propellant
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The stiffening effect of Internal w %

pressurization is demonstrated in Fig. 12, which PI( ps i ) -

bare cylinder as a function of internal pressure
for a constant external blast loading. The
black dots on this figure are values obtained 140
by PETROS 3.5 calculations and the curve is a
line faired through these values. The curve is
dashed beyond p1 - 8.48 HPa (1230 psi) to 13.1

indicate that a different trend may be expected
after the internal pressure alone is sufficient
to produce yielding. The great magnification EV0 -
of response in the neighborhood of pt a 0 is of

considerable practical significance. This can Z
be readily explained in terms of Fig. 13, which m 0 0shows the dependence of naturl frequencies

fn1 (un,1/2w) of the lower inextensional -n,l( wn,llw a'6-a
modes discussed in the Appendix on the Internal
pressure. One sees that this family of modes
is strongly affected by the quasistatic 40
pressurization p1 and that the lowest flexural

mode frequency f2,1 vanishes for P1 --0.214 MPa

(-31.1 psi). This intercept on the pi axis

represents the value of external pressure for 11
which static buckling of the cylinder would 0
occur without any additional blast loading. 0 2 4 6 a

The actual blast loading can be decomposed into Pi (MIPW

a transient uniformly distributed external Fig. 13. Effect of Internal Pressure on

Certain Inextensional Mode

INTERNAL PRESSURE p (psi) Frequencies

.00 S00 1000 1500 pressure and a non-uniform transient loading.
-... 3.2 The latter serves to deform the cylinder fromso the initial circular cross section (analogous

to a large initial imperfection) while the
uniform component provides a nonlinear amplifi-

2.8 cation of response if its magnitude is a
significant fraction of the pressure required
for static buckling. For the blast loading

60 2.4-z employed in the PETROS 3.5 calculations the
temporal variation of the uniform component is

C shown in Fig. 14. This pressure component
z . reaches a maximum of 0.119 MPa (17.3 psi), which
0 is 55.6% of the static buckling pressure, and

0o decays slowly with respect to the period of the
i- fundamental bending mode (39.3 ms) so there is

40 1.6 ample time for a large deflection to occur.
For large internal pressurization the circum-

Cferential membrane stresses remain tensile in
1.2 spite of the blast loading so there is no near-

buckling effect. In fact, consonant with the
4 =! raising of the frequency spectrum of the in- .. ,,,.<X
1 extensional modes with increasing pi, there is %

20 O.8 = a decrease in response amplitude (at least until

p1 alone causes plastic yielding). For
completeness it should be noted that the

WITH00UT PROPELLANT extensional family of vibration modes (s - 2)

whose frequencies are defined by Eq. (A-3) of
the Appendix are quite insensitive to

0- 0 variation of pi, as indicated by Fig. 15. ' "0 2 4 6 % 0"""
INTERNAL PRESSURE pi (MP.)

Fig. 12. Effect of Internal Pressure on Peak
Response
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1I 1 1 CONCLUDING REMARKS

The finite amplitude elastoplastic shell
F4.2 response code PETROS 3.5, while not capable of

fully representing the response of a rocket
* - motor containing propellant, has provided use-

ful baseline data for evaluating predictions
derived with other models. The linearized
analytical model referred to in the Appendix

f 3.2 provides insight into the meaning of the
results of the nonlinear numerical analysis.

t. 6The response of a typical rocket motor
configuration was calculated for the limiting

U situations of the bare motor case and of the ....Z f2.2 motor case containing the complete propellant
grain, each with no internal pressurization0
and with the pressurization resulting from
propellant combustion. It was found that the
unpressurized motors had a much larger defor-

fl,2 mation than the pressurized motors. Also, for
the motors containing propellant it was
possible to obtain an estimate of the tensile

fo2 stress to which the propellant/case bond would
be subjected.

The most significant result Is the quanti-
fication of the greater vulnerability of rocket
motors prior to their ignition, whether on the
launcher or as upper stages of in-flight

0 2 I 6 1 missiles.0 0 2 4 68

pi (M )

SFig. 15. Effect of Internal Pressure on .v, %,
Frequencies of Extensional Modes ," ,
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Appendix

VIBRATION CHARACTERISTICS OF PRESSURIZED ELASTIC CYLINDERS

The small amplitude elastic oscillations h = thickness of cylinder
of internally pressurized plane strain cylinders
have been investigated and, while the formula- a - radius of mid-surface of cylinder
tion will not be presented herein, certain

results which are useful for interpreting the Eq. (A-3) provides two values of circular
numerical solutions obtained with the PETROS 3.5 frequency for each value of n; the smaller of
code will be stated. these is designated wnl and the larger 1n,2

Let v(e,t) and w(e,t) be the tangential and The modal amplitude coefficients An,so B
radial components of deflection, respectively. n s
Then a free vibration mode consists of a are not independent. If An,s is chosen
deflection component pair of the form arbitrarily, then B is proportional to An s

nnsns n sWn,s = An,s cos ne sin(wn,s t + n,s) (A-l) and to a rather complex function of wns and q.

Since wo0,1 = w1,1 0 the corresponding
Vn,s = Bn,s sin ne sin(wn,st + *n,s)  (A-2) displacements are not vibratory modes. The case

n - 0, s * 1 represents a static axisymmetric
where n - 0,1,2,3,4, ... and s - 1,2. The expansion or contraction of the cylinder while
circular frequencies wn,s are determined from the case n - 1, s -1 corresponds to a rigid

body translation of the cylinder in the direct-the equation to ftee • 0 ln.For n ; 2, s - I the
ion of the 0 0*Plane. Fr~,~ h

2 ratio Bn,1/An,1 takes on values such that 
the

In,s 1 + (l+2q)n2 + k(l-n 2) middle surface extension is negligible; i.e.,
this lower frequency family of modes can be

2 4] characterized as an essentially inextensional,

t flexural set. The s a 2 family of modes, whose
+ (l+n2) +4(2+q)qn2+2k(ln 2)+klowest frequency Is two orders of magnitude

(A-3) greater than the fundamental flexural frequency
3 n the unpressurized case, may be characterized

where as the extensional vibratory set which, in %
general, also entail flexural stresses. The
n - O, s a 2 mode of this set is the 0

k t)2 (__c_)Pa c axisymmetric breathing mode of the cylinder.

.k c (A-V )p a

(A-4) .-.
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DISCUSSION
,4,

Voice: Apparently you are going into a finite
element analysis would you tell us why the
existing code does not solve your problem?

Mr. Huffinaton: The existing code does not
exactly solve the problem with the propellent
in the motor case and we are not satisfied with

* lumping the mess. We ignored the stiffness of
the propellent entirely. The properties of

, the propellent that I showed revealed that it
i quite weak with respect to the strength
of the motor case, so I don't think that
ignoring the stiffness is too serious. However
we wanted to carry out the analysis where the
propellent is modeled as a viscoelastic solid
and we have not done that in the model that I
have shown.

Voice: You also mentioned fairly good agreement
with experimental data; could you quantify that?

Mr. Huffinston: I didn't mean to imply that I
compared it with experimental data, I simply
said that it is consiatnet with the fact that
internal pressurization is known to produce a
stiffening effect; Just as blowing up an
intertube makes the torus stiffer. We don't
have any data to mke a comparison at the
present time.

iL
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EXPERIMENTAL AND THEORETICAL
DYNAMIC ANALYSIS

OF a

CARBON-GRAPHITE COMPOSITE SHELLS

A. Harari and B. E. Sandman
Naval Underwater Systems Center
Newport. Rhode Island 02840

A comparison between experimental and theoretical models of
a carbon-graphite/honeycomb composite shell vibrating in air
and submerged in water is presented. Mode shapes and reso-
nant frequencies are identified according to theory and ey-
periment both for in-air and in-water vibration. Excellent
agreement is exemplified.

INTRODUCTION above discussion is purely qualitative
in nature, the indications are that the

In addition to the well-known ad- carbon graphite composite may offer
vantages of utilizing composite mate- considerable advantages in the area of
rials in the fabrication of light- noise reduction. Experimental and
weight, high-strength structures, compo- analytical studies were conducted to
site materials also exhibit properties determine the dynamic characteristics
which are desirable in terms of reducing of a carbon-graphite shell in air and
structural vibration and noise transmis- in water. The analytical study is
sion. In particular, a carbon-graphite, based on the formulation described in
fiber/epoxy matrix composite exhibits Ref. [3]. Comparison between the ex-
both high rigidity and high internal perimental and analytical results is
damping [1] which are desirable charac- contained in the following description
teristics in the design of a structure of the current investigation.
which displays high impedance to dyna-
mic disturbing forces and low trans- THEORETICAL COMPOSITE SHELL ANALYSIS
mission of dynamic energy. Sandwich
cylindrical shells have been designed The shell structure consists of
and fabricated with carbon-graphite three layers of orthotropic materials.
fiber composite facings and honeycomb as shown in Fig. 1. The analysis of
cores for light-weight, high-strength the shell utilizes Hamilton's principle
applications. It is apparent that the to derive the equations of motion.
determination of the dynamic character- Continuity of the displacements is
istics of these shells in terms of noise enforced at the interface between the
transmission and radiation is essential core and the layers. Transverse shear
for the overall assessment of their deformation is considered and higher
application. The inherent characteris- order terms are retained in order to
tics of the carbon graphite composite make the analytical'model valid for
shells offer possible solutions and thick shells. The partial differential
benefiting factors in reducing the equations can be written in the follow-
levels of farfield radiated noise and ing manner:
structural-borne noise transmission. LD - -(P + F)

The high levels of structural stiffness where L is a (5 x 5) matrix differen-

and internal damping provide the possi- tial operator, and D is the (5 x 1)

bility of reduced levels of radiated displacement vector
noise, and the properties of the layered
composite construction with differing v
velocities of longitudinal wave propa-
gation in each layer impedes the path D Ru
of transmission [2] for high frequency
components of noise. Although the RVl
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containing the displacement components and the D are the model components of
u, v, w and shear angles u1 , v1 with R displacemW&Rt. The external forces and

denoting the mean radius of the shell, pressure loading are expanded into

P symbolizes the induced fluid oressure Fourler's components. For a given ex-

loading (5 x 1) vector, Pi#3 - 0, and F ternal force and frequency of excita-
tion, the solution to a truncated set

is the externally applied force (5 x 1) of linear algebraic equations yields
vector, the amplitude response. The elements

The solution for a simply supported of analysis employed are directly appli-

shell is found by expanding the dis- cable to the study of the vibration and
placement vector in the fo lowing response of sandwich shells. Both in-
manner: air and in-water vibrations can be con-

nit sidered without difficulty. In order
D Xmn D mn e to assess the validity of the theoreti-

m n cal model outlined above, experimental
where tests were performed for in-sir and in-

- cosaFcosne 1 water vibration of a carbon-graphite/Xmn 0 °Smrcosne 0 honeycomb sandwich shell. Subsequently, € , ).

sinaICsnO /the comparison of theory and experiment
m Iprovides the validation phase of thissiaCc BMWR study •

/ snmr'~n am L

L " cSma'cosne m L

LO sinam&sinnoe X.

FACING

F.0.562

SHELL Er 'TOWS-

~Fig. 1 -Sandwich shell and experimental fixture configuration

] EXPERIMENT movement is partially inhibited. The
boundary condition is therefore an

approximation to the analytical boundary" .;.
Figure 1 gives an illustrated out- condition which assumes zero tangential .. '" ".

line of the test fixture which was used displacement at the edges of the shell. \LI
for the dynamic excitation of the car- The material properties of the shell "
bon-graphite shell. The shell is were taken from tables prepared by the
mounted between two massive supporting manufacturers. The aluminum honeycomb
end-plates. The edges of the shell are properties were taken from tables pre-
constrained in the radial direction, pared by "Honeycomb Company of America, '
allowed free rotation, and allowed to Inc.". The carbon-graphit~e properties *

move in the axial direction. In the were taken from tatdes prepared by

b2

circumferential direction the shell is 'Fiberite Corporation". The material,.
allowed to move, but, due to friction and geometrical properties of the shell
enhanced by the radial force, this are as shown in Table 1.

L,•
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TABLE 1

Carbon-Graphite/Honeycomb Sandwich Shell Properties

Parameters Top Layer Bottom Layer Core

h. Thickness (cm) 0.33 0.35 1.78 ,

Ex, Tensile 2modulus in axial direction 0.55x1012  0.55x1012 0
(dyn/ca)

E., Tensile modulus ia circumferential 1.03x1012 1.03x1012
direction (dyn/cml)

12 2 12
* (Poissog ratio) x (Tensile modulus) 0.22x10 0.21x10 0

(dyn/cm )

Gxe, Shear modulus (dyn/cm
2) 0.31x1012 0.31x1012 0

Gzx, Shear modulus (dyn/cm
2) .... 0.93x1010

Gze, Shear modulus (dyn/cm
2) .. 0.55x 10

P, density (kg/m 3) 0.23xI04 0.23x10 4 0.25xl03

Resonant frequencies of the shell in particular, due to low levels of re-
air and in water were identified by spouse, no circumferential breathing
locating the low points in the plot of (n-0) type modes were found.
shell impedance during a frequency
sweep of sinusoidal excitation. Al- DISCUSSION OF ANALYTICAL AND EXPERI-
though the shell excitation and response MENTAL RESULTS
was monitored at the approximate center-
span of the shell, it was found that Table 2 lists and illustrates the
low-level anti-symetric modes appeared resonant frequencies and corresponding
in the response spectrum. This is mode types as obtained by theory and -_
probably due to errors in both the loca- experiment for vibration of the carbon-
tion of the shaker and a lack of corn- graphite/honeycomb sandwich shell in
plete shell configuration syimmetry. air. The theoretical frequencies were '
The mode type corresponding to a given obtained by performing a discrete nu-
resonant frequency was determined by merical frequency sweep with a digital
mapping the vibrating surface of the computer program of the equations which
shell with a hand-held accelerometer. provide the theoretical solution. Al-
It was found that the mode shape was though there exists some disparity at
relatively insensitive to a hand-held the lower frequencies, which may be
accelerometer both in air and in water. attributed to the boundary conditions,
Also it was determined that the resonant the overall agreement is seen to be ex-
frequency of an in-water mode was not cellent. The agreement is indeed re-
strongly influenced by the depth of markable in view of the fact that an
submergence in the neighborhood of the exact knowledge of the shell properties
surface of the acoustic tank. This is not established and the properties
factor allowed relative ease in the used in the theory are "good" estimates.
identification of in-water shell modes Table 3 presents the results of theory
with a hand-held accelerometer while and experiment as they were obtained
the shell was near the surface of the for in-water vibration. Main, the
water. It is noted that not all modes agreement between theory and eyperiment
of the shell were necessarily identi- is remarkably good with the exception
fied in a given frequency range. In of only one or two frequencies.

7 35

%% , %



TABLE 2

Comparison of Theoretical and Experimental
Resonant Frequencies for In-air Vibration of
Carbon-Graphite/Honeycomb Composite Shell

M)DR TYPE FREQUENCY (Hz)
(in, n) EXPERIMENT THEORY

(1,2) 1053 1210

(1,1) 1195 1650

(1.3) 1938 2016

(2,3) 2363 2650
/

(1,4) 3072 3050

(2,4) 3382 36,00

(3,3) 3650 3700

(1,5) 4026 402R

TABLE 3

Comparison of Theoretical and Experimental Resonant
Frequencies for In-water Vibration of Carbon-Graphite/

Honeycomb Composite Shell

MODE TYPE FREQUENCY (Hz)
(m,n) EXPERIMENT THEORY

(1,2) 537 616

(1,1) 757 820

(1,3) 1033 1120

(2,3) 1324 1560

(1,4) 1717 1786

(3,3) 1993 2252

(1.5) 2344 2520
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USE OF SHOCK SPECTRA TO EVALUATE

JITTER OF A FLEXIBLE NANWJVUNG SPACECRAFT

~%,

William J. Kacena

Martin Marietta CorporationDenver, Colorado

Structural dynamic analysts are responsible for evaluating the
effects of vibration on the operation of displacement sensitive

* spacecraft instruments. One example to an optical pointing instru-
ment that is vibrating because an orbital maneuver has just been
performed. This paper shows that a residual displacement shock
spectrum of the rotational acceleration time history defines the
vibration modes and the maneuvers which are critical to pointing
accuracy. In addition, several realistic maneuvers are discussed
and their effects on vibration are compared.

INTRODUCTION

The performance of displacement sensitive this identification.
instruments on a spacecraft may be degraded by
maneuver induced vibration, or jitter. Just as When structural dynamic analysts conduct
a wiggled camera gives a blurry picture, a vi- these worst mode and worst maneuver identifica-

% brating star sensor may produce a distorted tion studies, closed loop control studies can
record of star location. Any precision align- evaluate pointing performance directly without
ment instrument that operates on optical prin- the need for retaining uninteresting modes or
cipals to record or transmit from an inertial searching for a bad maneuver. Hence, these
platform in space (be it a star sensor, camera, identification studies can represent a consi-
telescope, antenna, laser, or a variety of derable cost savings in route to a correct
other sensors) is subject to vibratory pointing interpretation of spacecraft pointing perfor-
error. When large control torques are used, mance.
spacecraft optimization studies must consider

which torque time histories can best achieve the An additional advantage of the shock spec-
desired maneuver without introducing excessive trum approach is the comparison of dissimilar
jitter. This paper shows that a residual dis- families of maneuvers. Trade study results of
placement shock spectrum of the resulting accel- this nature are of value in deciding what
eration time history provides necessary data for control software is best suited to the pointing
such a study. operation of a particular spacecraft system.

For this reason, a spectral comparison study for

The pointing error in each vibration mode dissimilar maneuvers typical of actual control
results from solving a differential equation. system is presented on an envelope line basis.
With appropriate assumptions about the forcing Finally, the appendix summarizes an efficient
function, each modal equation is driven by a algorithm for determining the residual spectrum
modal constant times the spacecraft rotational on a digital computer.

. . acceleration time history. Given a maneuver
history, the envelope of its residual displace- NOt4D4CLATURS
went shock response spectrum accounts for changes
in the time scale that can interchange spectral Matrices
peaks and valleys, and the effects of various [m] mass
modes are compared by multiplying the envelope [k] stiffness
value at each modal frequency by the modal con- [ sines s
stant. In addition to defining which modes are [m I generalized mass
important to pointing accuracy, the shock spec-|iJ normal modes

trum approach identifies the time scale for a A a transformation flfamily of similar maneuvers that produces nearly a geometric transformation

worst case results. The presence of spectral mass moment-of-inertia
peaks at the critical modal frequencies provides pointing transformation
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douVectors A second assumption is that the control

S dlogic executes the maneuver with correlated
IX}cclerations about the body axes. In other
IJF discrete forcing functions words, the angular acceleration axis in a body

generalized, modcl coordinates system in a constant, and the
kil natural frequencies acceleration vector is written as
iml rigid-body moments
II direction cosines 0(t) 0(t), (5)

Symbols where {VI is a vector of direction cosines for
the body-fixed rotation axis. A combination of

a,b,B,C constants (4) and (5) gives
E envelope line
f £ frequency (Hz) iM(t) - [I] jV 9(t) (6)
J maximum jerk 

[ IV

pointing error = The rigid-body moments are related to the .6
q generalized coordinate discrete forces and moments applied to struc-

S, ( ) Laplace transform notations tural node points through a geometric trans-
t independent time variable formation [T]

- T half the maneuver time
-5,6,6,0 jerk, acceleration, rate and angle M(t) , [T] IF(t) (7)

of maneuver I
At a time step Then (6) and (7) combine to yield
W frequency (rad/sec) . *'

*-: APPROXIMATE EQUATIONS OF MOTION =[] ( (8)
T e t m fFinally, (8) in solved for IF(t)) to achieve

t The linear equations of motion for tethe form of (3)

maneuver excited vibration of a spacecraft are F - , ( I -

(in] (XI+ (k]F(t) (Ft1(A)IVJ VA

But what is IA) ? The coluasas of IAI are
When the free system normal modes sad natural arrangements of body forces which, when pro-

* frequencies are used to uncouple the equations, multiplied by [T] , will give a unit moment on
* (1) becomes the x y and z axes, respectively. In general,

" " 2 i -1  t fI [TIT ITI is singular, and constraint equations
+ 42 q - mg ,F(t)j (2) associated with the detailed control torque

S - - -- -logic must be applied before (8) can be solved

Several assumptions about the behavior of the for JAI
control system allow us to simplify the forcing
function to the more useable form For early system design studies, where

this kind of analysis is most likely to be
,F(t) =  Constant 0 9(t), (3) used, the control torque logic is unknown, and
I ) I [A) cannot be determined directly. However,

where 4(t) is the angular acceleration time a straight forward approach is to arbitrarily
history about the maneuver axis of the space- choose one of the many IA) matrices that satis-
craft. fies both (7) and (9). Although this may seem

like a gross simplification, this author's
Euler's moment equations I1 for rigid- experience shows that for real systems there

* body dynamics involve angular acceleration is little difference in the modal forcing
terms and terms which include products of functions, regardless which [A) is selected. I
angular rates. For relatively small angle One reason for this is that control torques are
maneuvers of a spacecraft with an active con- generally lower frequency than the structure,
trol system, the rates are generally small, and the free elastic structure responds as
and the nonlinear rate product terms can be though it is driven by a base-motion at the
neglected compared to the acceleration terms. CG which results from the applied torques.
This same assumption is implied whenever linear Some discretion in the choice of [A] is recom- 1 *
rigid-body modes of a free system are used for mended in the form of the guidelines below:
structural dynamic analyses. With this approxi-
mation the rigid-body rotational dynamics are 1) forces should be applied to stiff

written as structure near the actual control

z (4 r " j force locations; 0..
IM) " [I] (, 2) forces should not be applied to the

where the M's are external moments, the I ends of deployed appendages, unless ,.

are mass moments-of-inertia about the CG the actual control forces are applied

and i's are angular accelerations, all associ- there; and
ated with body axes that are not necessarily 3 fres .dn b .plda cnprincipal axs. 3) forces shoul.d not be applied adjacent

pripal s. to the pointing instruments under
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evaluation, unless the actual control Acceleration
forces are in that area.

Finally, (9) and (2) are combined to form .
the approximate sodal equations of notion 10 .

2T

LIVt,0 -tim
w i ()(10) 0
where IBI t constant associated with a par- -1.0
ticular body axis of rotation. For a known
maneuver acceleration about a known axis, the T
modal responses Iq} are determined from (10). a) Rectangular Wave

POINTING RESPONSR SPECTRiM

Response
The discrete response displacements in the onse

ith mode of vibration are 10
V/Cf)2

Generally, the modal pointing error of the 102
scientific instrument of interest can be
written as

Pi " [ {.} qit) -(P#), qi(t) (12)

where the row matrix (P] constructs the pointing 0 4  fQHa)
error as a linear combination of the system 1 2 I

deflections. This transformation to performance 1 2 5 10
coordinates says that a single number for each I I
mode, (PO) , can be used in a closed loop con- b) Spectrum for T 1.0 sec
trol analylis to evaluate pointing performance
directly. However, intermediate analyses are
necessary to identify which vibration modes I I
and which maneuvers create pointing problems. |

To this end, we combine (10) and (12) for Response I
the ith mode of vibration 10"

I P, "(P  ) '(t) - CI  t) (13)

The parameter of interest is the maximum masni- 1021

tude of the pointing error, p, after the maneu-
ver is over. Since the equations like (13) for
all modes of vibration differ only in the mag- 10
nitudes of the constant and ,, a residual
displacement shock spectrum of (t) is a con-
venient way to compare the modal effects as
functions of natural frequencies. This dis- 10" f(I)

placement spectrum may look something like that 1 2 5 10
for the rectangular wave shown in Fig. 1. c) Spectrum for T 0.8 sec

The figure illustrates that the spectrum
has peaks at some frequencies and valleys at Fig. I - Residual Displacement Spectra
others. In addition, an envelope curve, which
decreases with increasing frequency, bounds all dominant spacecraft mode. Zer damping is
the peaks. Fig. l(c) shows that, when the time assumed in equation (13) and in the spectral
scale on the forcing function is changed to results of Fig. 1. This assumption is made to
represent a smaller maneuver, the same envelope avert the ever-present problem of defending the
line results, but peaks may occur where valleys selection of a small yet specific value for
used to exist. These results show that the structural damping. In addition, showing that
envelope line, and not the spectrum, is the pointing performance is good for ero dampiag
proper rationale for identifying critical modes. eliminateo the need for a vibration settlng
The frequency scale from 1 to 10 es is used in time requirement prior to pointing instrument
the figure for illustration purposes only. operation.
For some spacecraft, a different range (say
from 5 to 50 is) will better represent the
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For very simple maneuvers, like the rec- reached before the acceleration limit to give

tangular wave of Fig. 1, the residual displace- a triangular wave with a time gap. The triangu-
meat spectrum of equation (13) is easily deter- lar wave shown with no gap implies that there
mined by hand using Laplace transforms [21 . are small angle maneuvers for which neither
However, slight increases in waveform complexity velocity nor acceleration limits are reached.
dictate the use of a numerical solution on a
high-speed digital computer. A simple compute- These waveforme are all shown symmetric to
tionally efficient algorithm for determination characterize the maneuvers of most interest as

Fof this spectrum is described in the Appendix. those for which the spacecraft has approximately
Before describing the spectra of other maneuver the same angular velocity before and after the .
time histories, a discussion of real maneuver maneuver. This implies that the maneuver angle
waveforms is in order, is small and that the residual body rate vector .

(which corrects for orbit effects) retains al-
TYPICAL MANEUV RS CHARACTERIZED most the same amplitude and inertial direction

that existed before the maneuver. That is not
Actual maneuvers typically have accelera- to say that this analysis approach is limited

tion time histories that look like the simple to symmetric waveforms (it is not); but rather,
waveforms of Fig. 2. In general, structural that most maneuvers are approximately symmetric.
and power considerations within the control
system itself limit accelerations as indicated Notice, also, that the waveform presented
by the rectangular wave. In many cases, the in Fig. 2 have a high frequency dither riding
same considerations result in jerk ( 4 ) limits on the basic pulses. It illustrates that a
as indicated by the finite slope of the trape- control system produces high frequency oscilla-
zoidal wave. Time gaps are depicted with these tions in addition to the basic maneuver. These
waveforms to illustrate that control systems oscillations may be related to noise, sampling
may also have velocity or momentum limits that or command frequencies or feedback of structural
can cause the starting and stopping pulses to vibrations. Although these effects exist and

be separated by a period of constant velocity may be somewhat maneuver dependent, they are
rotation. However, the velocity limit can be best evaluated in a closed-loop control

analysis.

Gap
0 ---. t

s) Rectangular Wave

T 2T 1 + T2  d) Triangular Wave (No Gap)

Gap

0 _t
b) Trapezoidal Wave

Ga e) Smooth WaveformI

c) Triangular Wave," * -

Fig. 2 - Typical Maneuver Acceleration Time Histories

42

,- -- - w, ., uv --,.-, - .--- a -* W* P VP V V V -_-.W.--_" V

~~~~~~- 4W W~..%44%~ t. \

-ft.-

.5 * . , *06



2~~ k%_ T:

J in(IM)I co i J Cos

J J J "_
T Tt T I t

-~ ; .J I~ 2T 2T

Ii IVV I -U

t I

t .in
Ir T I

a) Sine Jerk b) 1 - cosine Jerk c) Sine Acceleration

Fig. 3 - Smooth Acceleration Waveforms

Our objective with the shock spectrum technique are Jerk controlled at 0.021 J/f 3 . However,
is screening the basic maneuvers to determine there is a transition frequency between the
which maneuvers and which vibration modes are acceleration and Jerk controlled envelopes as
bad for pointing. This way the expensive end- illustrated in Fig. 4. The acceleration sve-
to-end control analysis can be limited to cri- lope controls below f - 0.21 J IOw., and
tical maneuvers and key modes when evaluating Jerk envelope prevails above this frequency.
instrument pointing performance. Fig. 5 depicts typical triangular and traps-

Finally, Fig. 2(e) indicates that sophisti- zoidal spectra: the peaks of the triangular

cated control logic may command Jerk time his- spectrum are more regular relative to the

tories that are tailored to produce a smooth envelope line. Changes in the time scales
acceleration. Fig. 3 illustrates that sequential for these pulses may interchange peaks and

jerk pulses having equations ' - J sin &t valleys, just as observed for rectangular

and e w J/2 (1-cos 2 wt) are reasonable pulses.

examples of this, while the acceleration qua- When time gaps are added to the rectangu-
tion I - Id sin(Ai/2 is not because the Jerk lar waves, the spectrum becomes irregular
is discontinuous at the beginning and the end relative to the envelope, but the same enve-
of the maneuver. The following section compares lope equation is retained. However, the addi-
the effects these two smooth waveforms along tion of time gaps to triangular and trapezoid-
with the simple pulses from Fig. 2 on a residual al waveforms not only creates an irregular
displacement spectrum basis. spectrum, but generally Increases the envelope

line to 0.032 j/f3 . This result is relatively
IM MA =IVER SPECTRA COMPARE independent of the magnitude of the time gap;

but when T (from Fig. 2) is an even multiple
We saw in Fig. 1 that the envelopes for of T, the envelope equations return to:.rectangular pulses without lime gaps are accel- 0.021 J/f 3.' Trapezoidal waveforms with time 5

eration dominated, 0.10 I/f'. When triangular gaps and for which the top time (T2 in Fig. 2)
and trapezoidal pulses without time gaps are 2

similarly investigated the envelopes for both is a multiple of the rise time do not produce
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1 1 Residual Response

q ,, 20 Z1 w 0.10 9/f
2

I

S4ac 2 -0.021 J/f
3

ft =.2(24 4.2 lz 2 N
0.10(1.0) 10 2

Response N

0103 N91 r N o.021 J/f 3

10- AN-10

1) Frequency (H) "

ya) Tpical Triangle Spectrum *j.
oX

Residual Reponse

10, R1po10. - 0.8

10 10 T1 2 5O 10J. 1.6 7 n.J -
Frequency (Hz) 10.2 % N

Fig. 4 - Invelopa Transition IN

10 0.021 J/rf

10"4 7'

10-5 1 2 5
Frequency (Hz) -

b) Typical Trapezoid Spectrum -

Fig. 5 - Typical Residual
Displacement Spectra
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, the higher envelope lines either. Since control Sine Jerk
systems do not produce perfectly clean wave- - 0.795

* form, it is expected that imperfections in Residual j = 1.0
the eccel ration waveform will yield the Response "
0.032 J/f1 envelope equation even when a per- -2

fect triangle or trapezoid without a time gap 10 '
in commanded. '

A typical spectrum for a smooth accelera- 
"IN

tion waveform is presented in Fig. 6. Despite 3'
envglope lines that are approximately 0.02 10 N
J/f , these spectra are dominated by a valley f3

near f - 47r/T that is several Hz wide and two ..-
orders of magnitude less than the overall
envelope. This result suggests that shaped
acceleration pulses are desirable because they 10~ -4
excite the structure less. However, Fig.7
shows that when the forcing function is a series
of ramps rather than a smooth curve, the wide4
valley becomes two smaller ones. This result I..% .
indicates that a noisy maneuver history may 10-i
give considerably less benefit than Fig. 6

suggests, as digital command updates may produce Valley
this kind of waveform distortion. A time gap II IIA l u l
in the smooth waveform causes the envelope A AM
to increase slightly, but the deep wide valley 10'6| 1 1 I%
is retained. 1 2 5 )

Frequency (Hz)

Based on all these results, the general
envelope lines are smarized in Table 1. Fig. 6 Big Valley from Smoothness
Although the smooth pulses produce lower re-
spouses for the same Jerk, they are not capable
of producing the same angles and angular rates
in the same time without going to higher jerks
and accelerations.

Sine
Table 1 - Envelope Lines Summarized Jerk - 0.795

Residual
Wave Decript n Envelope Response J = 1.0_ 

uation 
102 

q 'me

Rectangle 0.10 g/f 3  N

Triangle 0.021 J/fT 2 a.

Trapezoid 0.021 J"f3  N

Triangle with gap 0.032 J/f
3  10"3 N

Trapezoid with gap 0.032 J/f3

Sine Jerk 0.022 J/f3

(1 - cos) Jerk 0.020 J/f3  -4

Sine Jerk with gap 0.028 J/3 asa

(1 - cos) Jerk with le
gap 0.023 J/f3 

IN

Table 2 presents a different perspective by .. .
comparing the maneuvers on a basis of achieving liii
the sme angle and rate capability 

in the same 
_% ":

• time. This shows that from an overall envelope

, standpoint, triangular waves are easiest on the 10"6-
structure - either with or without the tme 1 2 5 10
Saps. For high frequencies and long times Frequency (Ha)

- (fT>2), all waveforms except the rectangle
another. Hence, there is little penalty in the

adverse frequency ranges if a smooth waveform
is used to detune critical modes. %
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Table 2 - Maneuvers Compared for Equal Angle and Rate Capability

Maneuver Acceleration WaveformsI?
parameter Rectangle Triangle Trapezoid* Sin Jerk (1-cos) Jerk '-

Angle 9 9 0 0 0

Rate O/T O/T /T O/T o/T

Acceleration O/T2  2 9/T' 4 9/(3T2 ) 2 */T 2  2 O/T2

Jerk 00 4 O/T3  16 #/(3T 3) 2 v/T 3  8 9/T 3  ''

Envelope z - /(fT))
Equation 0.10 zfT 0.084 z 0.11 z 0.14 z 0.16 z .- .

With Gap 0.10 fT 0.13 z 0.17 z 0.18 z 0.18 z

*T2T 1 T 2 & 2 T -  T2  (a typical trapezoid)

CONCLUSIONS frequency characteristics of the particular L
control system must be evaluated on an indivi-

A residual displacement shock spectrum of dual basis (perhaps using the residual spec-
-4, the rotational acceleration time history (@) trum tool) to determine if the elaborate Jerk

is shown to be a convenient technique for commands are worth the additional spacecraft
evaluating the effect of moneuvering on the cost.
performance of displacement sensitive instru-
ments. The response spectrum for virtually any APPENDIX - COMPUTER ALGORITHM FOR RESIDUAL
maneuver is enveloped by all the curves DISPLACEMENT SPECTRUM

e 0.032J /f 3  A ramp forcing function is assumed be-
Jtween sequential time history samples to give

E - 0.10 6 /f2  (14) the single degree-of-freedom equation of mo-
.1 ~acceleration max 2)tion

Evelocity . 0.18 6./(f T2  
+ 2q -a + bt (15) l.

where T is the time required to reach the
limiting velocity. The potential effect of For initial conditions q and o the Laplace
each vibration mode on pointing performance is Transform of (15) is 0 0

estimated by evaluating the minimum E at the b/52
modal frequency and multiplying by a modal a/S + b/S + q0 S + qo0pointing constant defined herein. A "worst (q) 2 2 (16)
case" estimate of the pointing error is the S +W 02!.:_ _sum of ia l the modal effects. 

k ,'; J

The inverse Transform of (16) at the and of
4 A closed-loop control analysis of point- each time step, At, yields -

ing may be desirable to evaluate the effects of2 2
noise and phasing of the dominant modes. When q(At) - (a + b At)/l.+(qo-a/2) cos(wat)
this is done, maneuvers that excite all the 2
significant modes should be analysed. Such + (qo-b/w )sin(wt)/l (17)
maneuvers are selected by choosing a time scale 0
which results in a spectral peak very near the and i(dt) - b/w + (a- q') sin(wdt)/w
frequency of each dominant mode. In this way, 2
a simple shock spectrum analysis tool elimin- + (4 -b/w2) cos (wAt),
ates using the expensive control analysis on 0. ".

a trial-and-error basis to identify the point- which are the initial conditions for the next
ing critical maneuvers, time step. When the forcing function is over,

the inverse of (16) is
The residual spectrum results presented

for typical waveforms show that significant q (t) - q Cos pt+7si(w) 18
performance advantages may result from smooth 0"s t

maneuvers. Vibration responses are reduced Finally, the spectrum value is the modulus of a.
when the maneuver is adjusted to give a large (18), which is
spectral valley in the region of critical modal 2 + 22 " -"
frequencies. However, noise and comand Spectrum () - [q q/ ] (19)
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A residual spectrum subroutine includes
the following steps:

1) The frequencies, wj, to be exmined and
the force and time values for each sample
of the forcing function are input data.
Since we are not concerned about the re-
sponse during the time the force is non-
zero, the time steps need not be equal.
This allows great flexibility in
examining ramps and simple pulses.

2) Based on these force and time values a, b
and At for each time step are calculated -
just once.

3) The original set of initial conditions qo
and q. are set to zero.

4) Equation (17) is solved for the new set of
initial conditions, qo0 and 40.

5) Step 4 is repeated for each time step.

6) Equation (19) is solved for the spectrum
magnitude, which is saved.

7) Steps 3 through 6 are repeated until the
spectrum at all frequencies is determined.

This algorithm is simple and minimizes the
required number of computations.
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BUCKLING OF EULER'S ROD IN THE PRESENCE OF ERGODIC RANDOM DIAPING

H. H. E. Leipholz

.. '

Department of Civil Engineering, Solid Mechanics Division %

University of Waterloo
Waterloo, Ontario, Canada

This paper is concerned with the buckling of Euler's rod In the
presence of ergodic random damping. For a small mean value of
viscous damping, s perposed by an ergodic random damping
fluctuation, it is shown that for a sufficiently small expected
value of the fluctuation's magnitude, almost certain asymptotic
stability can be guaranteed. Moreover, if the expected value
does not exceed a certain fraction of the damping's mean value,
the critical value of the load for deterministic damping
remains the stability limit despite of the randomly superposed
damping fluctuation.

Introduction

A modern approach to problems in mechanics
requires the inclusion of the stochastic
aspect of these problems. This is specifi-
cally true for stability problems for which
randomly distributed imperfections are of
great influence with respect to the stability
limit. As far as the buckling of rods is con-
cerned, the randomness of the load [1], and
the randomness of the geometry (initial curva-
ture) [2] has previously been taken into X
account. But it may also be of interest to
consider the buckling of the rod in the pres- (X t)
ence of ergodic, random damping. This Is
desirable as in real systems there is always
damping, and the mathematical model should sim- Figure I Euler's Rod
ulate reality as closely as possible. Also, F r - ls
the effect of damping has led to unexpected a const, flexural rigidity
results in many stability problems, for example m - mass per unit length
for rods subjected to follower forces [3]. 0 a coefficient of viscous damping
Therefore, it seems to be advisable to investi- P = load
gate random damping as well. v a transversal deflection

Consider Euler's rod shown in Figure 1. Obviously, the boundary conditions (2) are
Using the notations given in this figure, and being satisfied by (3). The differential
observing the boundary conditions, the follow- equation (1) is satisfied if f(t) is taken as
ing boundary-eigenvalue problem is obtained: the solution of

Civ +Pv" + my+$; O, (1) +E (4)

Separation~~~~ oftevribe ndtcnbet ristbl: f th ro. In(4, 4)iiv(o,t) " v(t,t) " v"(o,t)

v"(t,t) - 0. (2) The behaviour of f(t) decides upon the stabili-ty or instability of the rod. In (4), PEts

Separation of the variables x and t can be Euler's buckling load.
accomplished using

v(xt) " f(t) sin . (3)
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4 For The solution of (14) is known to be

/ (5) 1t
S T(p ep)/M't (6) f(t) - foh(t) - h(t-T)jC(T)f(T)dT, 15)

equation (4) changes into where, in the case of (8),

;+ 2pof + 2f = 0 (7) h(t) = Ce'l4o t sin D wot, (16)

If damping is small, 2 (( 1 2 2 1 
,0 ( 2 1/2 (7

0 < P < 1 (8)

holds true, and the solution of (7) reads 
Obviously, h(t) coincides with (9).

From (15) follows
f(t) Ce-Pwot s(nl-P l ot. (9) f(t) - foh(t) - I (t-Tlel )f(Tld

This result for f(t) obviously indicates 
fo

stability. The load P, corresponding to this
state of stability, follows from (5), (6) and - h(o)c(t)f(t).
(8). First, consider

S<But h(o) =0. Therefore,p - <1. i.e., 8 <2mw0 . (10)

0
f(t) =fh ;(t) - th(-)TfT dr.

Hence, 0 1
2ne.< W2 T2 (PE-P) (18)

4 0 - " and I;(t)l<fol;(t)l +

But then,

P<Pjh(t-T)I 9(T)jIjf(T) IdIT. (19)

The conclusion is that for P < P* there is Using (16),
stability. Thus, h(t) z [-CPwosinlwot + CDwocosDwot]e-Pwot

P* a P E - 0 2(z12 (20)
;( is obtained. Hence,

is the stability limit in the case of small,

deterministic damping. 1h1 < C(pwo+Dwo)e-""ot

Stochastic Viscous Damping or

Assume the mean value 1 of the damping IhI < Ke-Pwot, (21)
coefficient in (4) being superposed by an
ergodic random fluctuation b(t) of the damping where
coefficient. Then, (4) becomes K = Cwo(p+D). (22)

+ + . f ; +w2 ( - 0. (12) By virtue of (17), (22) becomes
W9. K p+(1-o 2) 1/2

Introducing (1-p2) /2 (23)

b(t)/m - t(t). (13) Combining (19) and (21) yields

and using (5) and (6), the previous equat)on dcan be changed into 1;("t) I_<c fo jKe ' ~ot +

+ po .f -1tf (14)
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and I*l K-Ifo IKe 'Kl t

follows from (31). Hence.

+ JoKlc(t' K o t  I(t)ldt. (25) t d K Jo

Setting
K KiIf 1 Kfo e-t (35)

I;(t)Ie~wot = v(t), " I " I1ol (

If0IK - g. (26) Using (35) in (32) leads to

and K
I imlf(t) I _< IfoI + Ifol -

KIL( )I - H(T), t-

(25) can be transformed into - lim Ifol K e-Klt. (36)
rt t

v(t) I g + H(t)v(T)dt. (27) For Ki > 0,

With (27), a relationship has been obtained to K
which Gronwall's lemma [4J can be applied. In li1ifoi eKlt = O,

doing so,

v(t) I g.exp It H(T)dT (28) and

results. Using (26), (28) can be rewritten to 1imjf(t)j < Jf0Jl + i) const.
yield t4M* (37)

I* P)eI
t _ TII) Since (37) indicates almost certain asymptotic

0 ostability, the conclusion is that for
or _ o. ...

I;(t) <fOX exp K '0, ie..E<K(38

there is almost certain as ptotic stability of

PWO t. (29) the rod. According to (23), the stability con-
I° dition (38) reads

However, since the random process is assumed to Pwo(1p2)1/2

be ergodic, with probability one, E(11) < -+O-P (39)
1p+(1-p2) 1 '

1 ft lO(T)l dT - eflal), (30)

t 0 Discussion of the Stability Condition

where E(laI) is the expected value of Il/4 Condition (39) imposes a requirement on the

Therefore, (29) can be brought into the fom load P of the road. This requirement shall now
be specified under the assumption that 0 is so

I;(t)I < IfoIK exp (K Eflaj) - pwot. (31) sm11 that 
2 is negligible, i.e.,

a 2 -- 0 (40)
Now, consider

t shall hold true. In that case, using (5), (39)

f(t) fo) + dt fo +  f dt yields

which yields E (41)
* If(t)I _I + J Ildt. 32)

1' .1 +03 an inequality which can be brought Into the form

With
,K Po - K, (33)o - "4

*~ * ' - , ' . ... ...-



%

For (42) to be meaningful, E < U/2m must hold. small enough so that (8) holds true, then, for
out this is certainly the case by virtue of a sufficiently small expected value of JI
(41). Hence, (42) can be used to yield which satisfies condition (39), almost certain

asymptotic stability of the rod prevails.

"W2 E2 2 Moreover, if 0 Is so small that (40) holds true,
0 >, (43) and if the expected value of Ia satisfies

(46), i.e., if this expected value is only a

By mans of (6), (43) can be transformed Into fraction of the small mean value I, then the
stability limit P'* given by (44) is above the

2 stability limit P* given by (11) and valid for
r2(PE-P) E2 2  deterministic damping. That means in the case

of (40) and (46), the randomness of the damp- %
a. (IS-2Em) n~ g coefficient does not impaire stability.
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WAVE PROPAGATION IN A CYLINDRICAL SHELL

WITH JOINT DISCONTINUITY

A. Harari

Naval Underwater Systems Center
Newport, Rhode Island 02840

The effects of joint discontinuity on wave propagation in a

cylindrical shell are investigated in this paper. The joint
discontinuity consists of an elastic interlayer at the joint
and structural discontinuity of the joint. The transmitted
and reflected efficiencies are found for several cases of

interest.

INTRODUCTION ciency are defined as the ratio of
power transmitted and power reflected

Long hull structures of cylindri- to incident power. The elastic inter-
cal shape are often made from several layer in the joint is considered to
cylindrical segments. The joints have complex spring-type properties.
connecting the various segments-are The stiffening belts are analyzed as
often lined with softer material and shell segments. Transmission loss in
are designed to prevent leakage and beams and plates due to structural tnd
rattling. Noise generated by a motor material discontinuities was studied
or any other vibratory source on the by several authors [1-3]. Wave props-
shell is transmitted via the shell gation in a cylindrical shell with
structure and interferes with the finite numbers of stiffeners was
function of instruments attached to studied in Ref. [4]. The analysis in
the shell. The joint structure intro- Ref. (41 used classical beam theory
duces a discontinuity. In addition to for the finite number of stiffeners in
the joint discontinui-ty, the edges of an infinitely long cylindrical shell.
the joint are thicker than the shell The analysis of a cylindrical shell
thickness thus forming stiffening with joint discontinuity was not
belts and introducing additional dis- studied previously.
continuity. The analysis considers afree traveling wave that encounters CYLINDRICAL SHELL ANALYSIS
joint discontinuity. The joint discon-
tinuity will reflect and transmit Consider a thin elastic cylindri-
waves of various types. In addition cal shell of thickness h and mean
to the traveling waves along the shell, radius a. The mid-surface of the
there occur exponentially decaying shell is described in terms of a x, G
near-field waves that do not transport coordinate system. The x coordinate
energy. The particular aim of the is taken in the axial direction of the
study is to find the frequency ranges shell and the 6 coordinate is taken
where energy is transmitted or attenu- in the circumferential direction. The

ated and to discover how the joint components of the displacements of the
affects wave propagation. The analy- mid-surface of the shell are desig-

sis investigates the transmitted and nated by u, v, and w (Fig. la). The

reflected power due to incident waves
impinging upon the discontinuity
caused by the presence of the joint. i
The power lost due to the dampin
properties of the joint is also found.
The transmitted and reflected effi-
ciencies are determined for variouscases of interest. The transmission Fig. la -Cylindrical shell coordinates

efficiency and the reflection effi- and displacements
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equations of shell motion governing u, n( ,t) - c E xp(lot + Pn)
v, and v are the Sanders-Koiter shell
equations in Ref. [51. The equations U (C0 - C' Exp(iot + pn)are written as follows: n n

where V (C.t) C Exp(iwt + pnC) (3)
n n

u + (1-v + to + -- (-V g
+ 12 wherew is the circular frequency and

-122bv - - 2 V (l-V 2 a 0 Cn , C., and Cn are constants. Substi-
2 niv)i n n4'

tuting Eqs. (2) and (3) in Eq. (1), one
obtains three homogeneous algebraic

esuations on the constants C C and

-( b (1 +b) C, the determinant of which when set

". to zero yields a fourth order equation

+ (1+b) v., + b 22 +bVe - v+ on P Eight roots, are obtained, thus
2

2  
CEO~ i( k e To

2_i(v 2 ) 9-0 (P ) - + L k -i ... (8) (4)

-P kn k n

olding eight independent solutions.iending on the nature of the roots,

2 vCC8 + the solution describes propagating or
near-field wave solutions. ,Using Eq.

-V e + b (v + w. + 2 ve) + v (1), the constants C and C can be
n Cn

2 written in terms of the constant C_.

+ P 1 (1-V)2 ua o Since the analysis is done for eveliy n
component separately, it is convenient
to drop the subscript n from subsequent
expression and discussion, with the
understanding that the analysis is for

c-x ( [ =C, ( e3 7 a particular n mode. The eight inde-
pendent solutions can be separated into

- h 2 two groups of four, where each group
( ) b-)-I is associated with a semi-infinite

12a shell excited at the edge. The first
group contains solutions where

E is Young's modulus, Poisson's ratio 
6 k -, k > 0 and solutions where

is denoted by v, and p is the mass 6 > 0. The solutions describe back-
density w;rd propagating waves and near-field

waves associated with a semi-infinite

The displacements w, u, and v may shell, - - < C < 0 (left side), excited
be expanded by the Fourier series in at the edge E --0. The second group

contains solutions where 6k - 0, Yk < 0

- and solutions where 6k < 0. The solu-v(,eW - coo.(no)
0 a tions describe forward propagating

waves and near-field waves associate.

with a semi-infinite shell, o < C < U

u(C.Ot) - u cos N) (right side), excited at the elge

0 -0.

* Solution to the Problem of Wave
v(C,e,t) a v .in(nO) (2) propagation in a cvl rcal Shell withU.0 Ik Joint DiscontLUuitY

The solution to the problem of a
the circumferential, 0, coordinate traveling wave encountering joint dis-
direction. The solution is then sought continuity consists of solving the
in the following form: cylindrical shell differential equation
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and matching the boundary condition at M
the joint. The analysis considers two UL + U I R z
semi-infinite cylindrical shells con-
nected by an elastic inter-layer and an
incident wave traveling from the left
in the positive axialdirection. The L +I K N
first case that is considered here is v +v - V -- 2
a joint without the stiffening belts,
i.e., the effect of introducing the
elastic interlayer. The schematic , + _ .
diagram is shown in Fig. lb. Since the +3

L 
WL

L0 Wi vv WR MRo
a aC '

.0, L + N R .0

Fig. lb - Cylindrical shell L 0
with material discontinuity L + N1 - N " 0

dimensions of the elastic interlayer QL + Q1 . QR, 0
are small, its response can be simpli-
fied and considered to be the response UL + N _
of a mass-less continuous spring at
frequencies that are not too high.
The stiffness of the spring per unit
circumferential length depends on the evaluated at the joint, where
elastic properties of the layer and its
axial and normal dimensions. The
stiffness of the spring in a specific zh3
direction can be simplified and evalu- 2 + -2-v)

ated as follows: 12(1- v) v + ae

S03*(1+F") Tk (3-4) -(l-V)

where E* is Young's modulus or ther
shear modulus of the elastic inter- N z 2 C + V (ve - W)
layer, n is the loss factor, T and L I
are the appropriate dimensions of the

layer and considered to be thickness Di ( b) + (1 - b)and length. The index k - 1,3 refers N (I +( 1 b) v +( . )v
to the axial, tangential and normal 2 (l+0 a 4 4
direction. The expression for the
moment stiffness can be written as + 3b vC
follows:

84 a V ll+in) ; N Rt- h, + V +W

S l ) 12(1-v) a e

Consider a wave traveling in the osi-
tive direction and encounterin g a The superscripts L and R indicate that
elastic layer discontinuity. The the displacements or the stress-resul-
boundary condition requires continuity tants are associated with the semi-
between the elastic layer and the two infinite shell on the left, or on the
semi-infinite shells and equilibrium right, side of the joint. respectively.
of the forces. The boundary condition The superscript I indicates that the
can be written as: displacements or the stress-resultants
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I- - 1=

are associated with the incident wave. D B (9)
Eq. (5) represents the boundary condi-
tion without cross-coupling between the
kinematical and dynamical variables in where B and H are 4x4 matrices and
the axial, tangential, normal direction where C2 is a 4xl matrix representing
and the rotation. The boundary condi- the unknown constants. Substituting
tion for joint design with coupling Eqs. (8) and (9) into Eq. (6) one
between the edge variables may be des- obtains
cribed by the equations evaluated at r1r

S+D D I_A ('-I C1  - D1

D + D - D" I FI (10)

L G -Nj 1 C F
Sr - 0 (6) L L [

the joint, and where D is 4xl matrix Solving Eq. (10) one obtains the con-
representing the displacements, and F stants C1 and C2 . Once the constant

is a 4xl matrix representing the vectors C1 and C2 are known, thestress-resultants and where X is a .1 ,
reflected and the transmitted waves
can be found. The power transmitted

D V U V V T and the power reflected can also be
S u vfound from the velocities and the

stress-resultants. Figure Ic is a

E 1 11 (7) .J0_.

4x4 matrix representing the joint _---__ _---_

properties. The nondiagonal terms
represent the cross-coupling between
the edge variables. Eq. (6) reduces to Fig. lc - Cylindrical shell with
Eq. (5) if the diagonal terms are equal stiffness and material discontinuity

to A kk W and all non-diagonal terms
are equal ~o zero. Rigid connection schematic diagram of an infinite
can be specified by setting all ele- cylindrical shell interrupted by a
ments of the matrix I equal to zero. joint with stiffening belts. The
Soft connection can be specified by boundary conditions are imposed at the
high value Aij. Properly chosen three points of discontinuities. Two
values of Xij can describe joint of the discontinuities are change of
design where the two shells are rigidly thickness discontinuities and one is
connected with respect to some kine- elastic layer discontinuity. The
matic variables at the joint and free stiffening belts are analyzed here as
with respect to others. Hinge joint cylindrical shell segments rather than
is an example of such a case. The stiffeners because of the relatively
edges of the shells are free to rotate stfe because of th nrltils
while the normal axial and tangential large width. The boundary conditions
displacements are rigidly connected. are:
The expression for the vectors D and F
associated with the semi-infinite shell DL + Di  DR- 0
-07n< E < 0 on the left side of the
j oint can be written in the form FL + Fi - FR - 0 (11)

1 1 (8) at the left thickness discontinuity;

where A and G are 4x4 matrices and DL - D R+ IFR - 0
where C1 is a 4xl matrix representing

the unknown constants. The expressions _ FR 0 (12)
for the vectors D and F associated with - F
the semi-infinite shell, 0 < & <
on the right side of the Joint, can be at the elastic interlayer discon-
written as follows: tinuity; and
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DL -D -0 the second subscript indicates the

L resulting wave. The traveling waves
_- -0 (13) are indicated by the order of their

appearance along the frequency scale,
i.e., i-1 indicates the first traveling

at the right thickness discontinuity, wave etc. The frequency parameter Is

where the superscripts L and R indicate T- aw i4 (l-vz). Thickness of shell
that the vector is associated with the to radius ratio is 0.02 and Poisson's
shell to the left or to the right of ratio is 0.3. The incident wave con-
the discontinuity. The superscript i sidered in the examples presented in
indicates association with the incident Figs. 2-8 is the first traveling wave.
wave. Eqs. (11), (12), and (13) lead The incident wave considered in the
to non-hoaogeneous equations on 24 example presented in Fig. 9 is the
unknown constants. Four unknown con- second traveling wave. The first
stants are associated with each of the traveling wave (8 - 0, Y 0 0) starts
semi-infinite shells and eight are at T - 0.0155 and can be classified
associated with each of the stiffening as a bending wave; however, at low
belts. Once the unknown constants are frequency, the wave .is essentially a
known, the transmitted and reflected membrane wave. The second traveling
waves can be found. The transmitted wave starts at T - 1.185 and can be
and reflected power can also be found classified as a torsional wave at
once the velocities and stress- intermediate and high frequencies, At
resultants are known, low frequencies the wave is a longi-

tudinal wave. Figures 2, 3, andl pre-

Numerical Results sent results that show how the magni-
tude of X affects the transmitted and
reflected efficiencies. In each case

The numerical analysis presented the same value was taken for the diago-
here investigates the transmitted and nal elements ) A A X
reflected efficiencies due to an inci- nal" e n " 33 ' 4 4
dent wave impinging upon the discon- The non-diagonal elements of the matrix
tinuity caused by the joint. The X were taken to be zero. Figures 2
transmission efficienty Tij and the and 3 present two extreme cases. The
reflection efficiency RiJ are defined value of a - 10 was used for the
as the ratio of power tre smitted and diagonal element in the example pre-
power reflected to the incident power. sented in Fig. 2. The low value of a
Double subscripts are used for Tij and represents an almost rigid connection.
Rij to indicate the incident and the The consequence of the low value of a
resulting type waves. The first sub- is that the transmission efficiency T1 l

*' script indicates the incident wave and

. il

%,FREQUENCY PARAMETERN

%8

%, Fig. 2 -Transmitted and reflected efficiencies versus frequency parameter for a
, bending wave impinging on a point with x11 = '22 a '33 = '44 10

Sand no stiffening belts. The circumferential mode is n - 2
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dominates the results presented in Fig. A do not have the same value. In

2. The value a - 6 was used In the particular 144 is very large due to

example presented in Fig. 3. The high the fact that the layer is thin and the
value of a represents very soft bending stiffness is very small.
connection (a - - represents free edge). Figures 5. 6. and 7 present the trans-
The consequence of the high value of a mitted and reflected efficiencies for
is that the reflection efficiency Rl the following circumferential modes,

dominates the results presented in Fig. n - 0.1 and n - 2, respectively. The
3. The transmitted and reflected value of the non-zero elements of the

efficiencies for an intermediate value matrix A was taken to be A11 - A2 2

of a - 102 are presented in Fig. 4. " 33 ' 102. and 144 - 10 . The high
In general, the elements of the matrix value of 144 indicates an almost hinge

IL

8. "- 0

al

AL
W

~8

L

REUENCY PARAMETER

Fig. 3 - Tranmitcted and reflected efficiencies versus frequency parameter for a
bending wave impinging on a joint with xll - X22 - 133 - X4 4 m 106

and no stiffening belts. The circumferential mode is n - 2

o0

0Z 00 nil .

W4 .

Fig. 4 - Transmitted and reflected efficiencies versus frequency paramettr for a ,..
bending wave impinging on a joint with A11 - A22 - A33 -A 4 4  

0z ,

and no stiffening belts. The circumferential mode is n = 2,..
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connection where the edges can rotate circumferential mode is n- 2. The
relative to each other. Figure 8 pre- second traveling wave is the incident
sents the transmitted and reflected wave in the example presented in Fig.
efficiencies due to a joint with 9. The cutoff frequency of the second
stiffening belts. The ratio between traveling wave is at T - 1.185. The
the thickness of the stiffening belts wave can be classified a torsional wave
and the thickness of the shell is.2. at interwediate and high frequencies.
The ratio between the length of the At low frequencies the second wave is
stiffening belts and the radius of the a longitudinal wave. The neighborhood
shell is 0.5. The non-zero elements of of the cutoff frequency of the second
the matrix X are as follows, traveling wave is marked with sharp

2 6 response. The transition from the
11 22 33 A44 = 10 . The solution with one traveling wave to a

0 "e i: 0

c',,

a. TII  
*I'

T edn aeipn ig onaJitwt%1 2 . " 1 2  ' 0  "'

.

0.5 1.0 1.5 2.0r

FREQUENCY PARAMETER

Fig. 5 - Transmitted and reflected efficiencies versus frequency parameter or a
bending wave impinging on a joint with x 11 = A 22 X L33 = 102 , 4 4 =100

and no stiffening belts. The circumferential mode is n 0 U
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FREQUENCY PARAMETER

Fig. 6 -Transmitted and reflected efficiencies versus frequency parameter for a
bending wave impinging on a Joint with xA11 - XA2 2' X 3 3 - 102, A 4  10)6

and no stiffening belts. The circumferential mode is n - 1

0
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solution with two traveling waves frequency is primarily axial. The
involves a process in which a near- elements of the impedence matrix asso-
field, exponentially decaying type ciated with the axial direction become
solution is transformed into a very small at the cutoff frequency.
traveling ty e wave. As the frequency The impedence mismatch varies rapidly
approaches the cutoff frequency, the due to the rapid changes in the
near-field solution gets larger response of the shell relative to the(
approaching no decay at infinity. response of the layer. In addition to
Beyond the cutoff frequency, and the sharp response around the cutoff %
starting with an infinity wave length, 'frequency, the impinging wave causes
the wave is sinusoidal along the axis reflection and transmission of the
of the shell. For n - 2, the motion of second traveling wave. The presence of
the second traveling wave at the cutoff the near-field solutions brought about

U

2T

-o o-...

1~11 *T 11

0.5 1.0 1.5 .,

FREQUENCY PARAMETER

Fig. 7 - Transmitted and reflected efficiencies versus frequency parameter for a
bending wave impinging on a joint with Xl1 - A 22  A 33 - 102, X4 4 -10

and no stiffening belts. The circumferential mode is n 2
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by the discontinuity affects the trans- was presented. The effects of the
mission or attenuation of the wave. stiffening belts on the transmitted and
The near-field solutions can create a reflected efficiencies were also shown.
region around the discontinuity that
in effect blocks or bridges the transfer
of energy. In order to find the points REFERENCES
of maximum transmission, or attenua-
tion, one has to perform a frequency C. L. L. Beranek, Noise and Vibration
sweep for the shell considered, Figs. Control, McGr-Hill, New York,
2-9. Explicit expressions for these 1971.
points can be written for simpler cases
like a beam, etc. The resonances and 2. E. Skudrzyk, Simple and Complex
the overall response of the stiffening Vibratory Systems, The Pennsylvania
rings introduce an additional effect State University Press, 1968.
on the transmitted and reflected
efficiencies as can be seen in Fig. 8. 3. L. Creamer, M. Heckl, E. E. Unger,
The effects of stiffeners on sound Structure-Borne Sound, Springer-
transmission in a cylindrical shell is Verlag New York Heidelberg Berlin,
discussed in Ref. (4]. 1973.

CONCLUSIONS 4. A. Harari, "Wave Propagation in
Cylindrical Shells with Finite
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continuity was derived. Numerical
examples were presented for several 5. J. L. Sanders, Jr., "An Improved
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Fig. 9 Transmitted and reflected efficiencies versus frequency parameter for a
longitudinal/torsional wave (second travelling wave) impinging on a joint

with x f 22 A 102, A 106 and no stiffening belts.
The circumferential mode is n - 2
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with 2(z1) or ml)-Zx I -2 fol., 1-3, 5, S and considering the nmosolinio
t 1 symetry far the twa-fbld ads, w obtain
the 8titfbnese awe 01.1 oj 015' 0149 the fbllowing three equations

a022, o09 '04P O3 OW o O o (W-,,+t)U,- 4't us.- .Lpv: o
056, G6ovU,+ )a.~'
Mor the other two orientations of the Z, u + ( ) P226
2-fold axis of the monoclnio s=, t 36.

we have 4 U, , -+u 244p-Nu

?() or aU.2 ) s 01.1 12# 015, 015, ,,eo. 0.=, ) o 0

G23 cq59 OW 05 4106 55P 6 Ikee%
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AK.

Thin is a bioubo equation and we write For the mpormonic Gas, the diplgopOmnts
3_are written in the ftb (1s3) er
* . 1, ,5, (It) arm only replaced by,! and frep

transonic CBSe*#. are simply replacedthroughout by

and is related to V and tlo, b 3"

Now, for the conditions at infinity,
On esmining the roots of (II ), we find (1) all daplcments end stresses must
that three caeoes 8 e aeord as remain finite at infinity, and (ii) at

thate d catenes fsro the point or applies-

(a V(~1 A~f whi b ~t~i Of the loed the disturbance must
() V 14557f4 + hh we 011 consists of outgoing we vs. These are

sclled the finiteness and radiation condi-
.su~bsonic ca, 8tios, repectivaely.

is We have considered here those solutions
supersonic casse ,nd which mtisfy the radiation condition atiinfinit The solutions or the ft

(i11) V <.Jiemt w47n L hich we e4Ci%(,2 are not considered on the
Mlcas beis of the radiation condition because

iiall call tranionic case. they represent disturbances which originate

8)i Infinity &nt converge toward the lced
For a sbsonic case, the dimplace- Pung (0655)_/.

sonts are now written as I
F'66 , 4j.7 Our problem Is now to find out the

1 r2# 00 U 1 th ta0thema tiol solutions of the above three
-g z #eS" fbr monoclinie, orthorhoebic end

v.- %1C± (13.. , cubic crystals subject to the boundery
i- 0 ~~j..V~~t * ~ ( onditions given by ('7).

To 'd •, rE u ,, Sj t'7 ', -'Tt' , 2 , .o ur. in .

where 311O7JS M O 16POU

_ui si Came I* Subsonic

@oU, +4,1 u + d,3 iJ3  - iC.).,U -2,., + . + . ,1,.,
(14)

where 
%

A :,, 8 . s 1] P' Pc.,K '
it IL U

(The values of aZ are asoelated with the & J-i -1 1 .s (is)
t and the integral for of the delta function

he$ been repleed by 1(i4) which he a
,laning like a Heaviside stp tnotion. 0

From equstions (14), we get
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. . . ... 

U-Ll P1(w4 The nsa-sere, streass are given by

,I,*,*~T 6,1e & U.. f - 0- 1,. " P, cot' soU 3  04 ( &2 4 ,S*)+ Cjt

Where 7YzpA cgs C24 S.L. -s ,L ) + 'L X
%I AnA44= Allfa -Oil _ 0, -S &.,+iP,c, e 4 S3P3Q.GS03

o& A 1  7'1 e#L4-"01 - 14 're O t

Sso to 14,)m* o note tha it 4. a O tvea+t_

%3 . All PS," OL3 A3 All ..s ., ,,,44 . ,. ,,+ ',,04 S; "
C144 C2 , 'r3 f- 1~ roo -n~ P-42 S3 f.e c'"~ t o.

4iw all) A,

and aft) the Mooofteatain "SSI t)+ie' (C"e ors -"411 -%44.60 +C

or I~ surface wye sIn %be mmsollie
weorysta am be obt(ame To datemr) this(pc .. rZ surfloeTs wveocity,~ three different pool-

.. ' ) ai + tve values of q A i" stify the -s.-tis
and the root Alci wakes li of therm 01pstwerdtze p 3

eaolad brpoied are de s 3

Toot otly wil give the eloity of

", , hyei v (re--f). It the load -so7 (i0) at sotly the speed of Is~ h- -r €o
Now the first part of the latogml Is waves the re0-ses lill be ifroity

- ) + .., tro gtho. 4re7et
~~.*-*~)I~~(bb] pwhaeed are I th rnela an

gie a eeIand eplaos,

. thouhot [hreor, e o

* Xes

~ ~?)J~~' PZ~klZ)ais the Irea nebe of
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N ..

anc. k4)=0(xj4.Vt) lathe proseeeCaeSTnoi e
distribution over the Pithee -. . 1soplaing P , the tplnmet
-end the stresses . a mooolinlo orystal
Or, the Intl part t cam be fband out froe the ebove analyses.

i-1X Thus,
S . )-A +,. m,- )

resuidaIto the loed 00o4) is aeam- 3C 2
castrated fre eh. wp hee

10, (,1,- -4-&'4* -, +. ( -) + -

(f4) S.i(94) P bt*OO8I SDUIWLPU

+%*1e (a4412s +%3 t1o 74t pmi .oo thA

1o04i" Posat [ and, o-,as

+he 206A./ are (%f.t,, - ,o. + oo,, , Tet -, eo f oluon in m

P3 -- ' resut of hih te dip aet s ul h a ndu

The tresesoreIn the asgittal place, are ooqabed wilth the
T1: .4) belF1C CI pleoment u3 normal to It. For an orthonr-

- hbl, orystal, these coupling onstants
CA& (nd alo ) are absent. fqtstione (10)

ten have the tw solutions

(oil - ea& ,+ - 24 Sz +. . 3  U, f a- U1 0 3

6(xix) cel -Cz&-r es)1an U, -U 2  U3 O 40(28

S-eConsdering the fis t o onl ,, wich
S "- r 1 J- C,, ,, - la ays of plane strain, we hoe

C-4 S,.0. +- Za_. X2;- ) %- ",,

which ise qadretlo eqation Inh If
Unie4 - ,) be the two roots, ye get

el 4 C4 SJ Q'.,

+ S0h . N take the dudleco mts In the frm

Unlike the Isotropic case, here It Is X11 29- SOL liCi Et 7 ",'(1L

by thareve ifn ex ,xi=0ndS
and X, -~e: (27 =au~v Y, "

The mdii. Is undisturbed In front of
theme wav'es.
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Consdeig t. boudry condition (where -
the eqation for T4 is identioally sere), -

w.e have 4.
u,1 - P ( +i.A)

and4 (55) - -

uI)Xl P-A') .; i L), 0.1 (,[C7,-)_i4,7-L..1 )- ( _,)4

TIerefor e oe tt r

whral obtained f. - ( a,+i ) .- - s .U) -'4 - , , ,

4• CU U -it +i 112, +2 1 ,cPc<),>Ol ,

t, a o h g I x.)

+il gi+ sor ~s 1 1. RuoIn t0i

+ - ,

It , e et the() or,

(79",'A'Ie ''-'a £. - i sa~

In thi ease, +h diimaet are )(rked A

ifL 41 0, be tot th aee o Mesg

surges %ive. In that com, tiave

roots,.(., , ) i , ,tif e,,-is.a ,o ted fo. , . .t

wher a, re .obtained ,from ON. After -(,i 1 4 - -) '(
aopllesation, i fiurth dglree equatio e

fr i obtined, on* root of whiche as i on) f ollotarly, ee haes

(, -S) ,V3 (, - &- 41t"+l f ) - '"

and positive'd-l)give thvelocity o

erae (e o
u _ V I V Iil 6 1Ilelk

at In this aed, th displacemets are osrtllb

M-, by two wves

CU " " i, . (, - -
In tis set three different positive = 0 _ x/.] root@ ( x P I fV!2-/OS4 ) wihth satisfy the X, B

above equation to first doe r~nod and the

root ,, re u. al ree as Ir o th.os wa vs.~~~and povitive will give the velocity ofhe lsoifrtsTtseue.

, 'sutee wae,. If the load moves steadily Transonic asse -
--- ' i~t this speed, the responses will be '.,infnteily large. We conside the case whre V <,{

4.4
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ADJUSTHEW OF A CONSERVATIVE NON GYROSCOPIC

A1THIMIATICAL 01DEL PrO IASURIEENTW ) ,

L. BUGEAT, R. PILLOD, G. IALLE4ENT, J. PRAMDA
Laboratoire de Mdcanique Appliquie, associ6 an C.N.R.S.

Facultfi des Sciences do Besanson, ynA(ee)

We are presenting a method of calculating the modifications of a discrete,
conservative model, which enables one to reduce the distance between its
dynamic behaviour and the one identified on the physical structure. An ini-
tial approximate model is known and results from a discretisation "a priori"
for example by finite element method. The comparisons of the partial eigen-
solutions of this model, together with the corresponding eigensolutions
identified on the physical structure, enable one to locate the spatial area
(or groups of degrees of freedom) where the initial model reveals dominant
errors. The exploitation of the perturbation method enables one further to
calculate the variations of the physical construction parameters, such that
the modified model becomes, on a certain frequential field, dynamically si-
milar to the physical structure. The results of a numerical similation are,
then, presented.

INTRODUCTION to be introduced in an initial, conservative mo-

The recent development of the modal del, such that the new conservative model of si-

identification methods of the mechanical sys- milar .order, thus obtained, admits for eigenso-

tems enables one to envisage a more effective lutions, those which have been identified on the

exploitation of their results. Particularly, the structure.

degree of accuracy obtained on the eigensolu- The advantage of the solution of this

tions identified enables one to exploit them in type of problem is confirmed by a recently-pro-

view of improving the mechanical model represen- posed method [i1, whose aims is to adjust the

ting the structure. We are limiting this study eigenfrequencies through parametric modifica-

to the case of system whose mechanical characte- tions in the areas where potentiel and kinetic

ristics are representable after disiretization, energies are dominant. These areas do not neces-

by real, constant, symetrical matrices. We also sarily correspond to those areas where the ini-

assue that the dissipating forces in the struc- tial model reveals the greatest errors. The phy-

ture are small in comparison with the conserve- sical interpretation of such a modified model is,

tive forces, and that the eigensolution of the therefore, particularly delicate.

conservatice structure associated to the real

structure are, therefore identifiable with 2 - DATA 0 TIM PROBLEM

good precision. The adjustment method presented

here only concerns the conservative model. The The data of the problem are as follows:

propounded objective consists of determing the the matrices of inertia N(s) and stiffness K(e)

modifications of inertia and stiffness that are aeo re NNrasmerccntnare of order (?NcN), real, sylmeric , constant

edi~flton of t,.ti WI'd stiffness that a
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definite positives. They correspond to the initial admits as first n eigensolutions Y,~I) and A(I).

model and are assumed be obtained by finite ele- The method propounded consists of two distinct

ment method, stages : the first stage is one of localization

which consists of finding the area or groups of

Then we calculate the corresponding no- degrees of freedom of the structure for which

dal and spectral sub-matrices, YI(e) and A (e) the initial uodelization reveals dominant er-

respectively, of order (N,n) and (nn) characte- rors. The second stage consists of calculating, L-

rizing the first n eigensolutions. These diffe- in the previously-located areas, the modifica-

rent matrices satisfy the orthonormality rela- tions of physical parameters to be introduced

tions in the initial model in order to have its first

T¥1(e) M4(e) Y1(e) - EI  where E is the n order n eigensolutions coincide with the identified
unity matrix eigensolutions. This calculation is based on a

T Y (e) K(e) y I (a) . A I (e) sensitivity method.

It is also assumed that the experiments 3 - LOCALIZATION OF HELIZATION ERRORS

on the structure have permitted the identifica-

tion of the modal and spectral sub-matrices TI The exploitation of the perturbation

and A2 (i) respectively, of order (Nxn) and (nxn) method and of equilibrium equations enables one

characterizing the first n eigensolutions of the to determine the dominant areas of the additio-

conservative structure associated to the real nal matrices of inertia AN and of stiffness AL.

mechanical structure. We admit that the preci- Their locations define more accurately the posi-

sion of initial modelization is reasonable, such tion of the group of points of connexion and

that the distance between the calculated and D.O.F.'s and, consequently, the spatial areas of

identified eigensolutions is sufficiently small the structure in which the principal modifica-

and enables one to carry out a mode-to-mode cor- tions should be carried out. This process enables

respondence. The method of mode-to-mode pairing one to reduce, in a large proportion, the number

adapted to our formulation of the problem is of unknown quantities and transform an initially

based on the quasi orthonormality of the modes highly - under - determined problem to an over-

identified compared with the modes calculated, determined one. Among the infinite number of pos-

This property is used to construct a matrix of sible solutions, the calculated solution taking

linear combination (EI + Ait) (cf. : relation 6) into account only the dominant areas, seems to

with dominant diagonal and minimum norm. We shall present an acceptable physical meaning.

not go into a detailed expose of this method. It

should, however, be pointed out that the method 3.1 - Exploitation of the perturbation method

propounded by R.E. HULL, B.I. BEJHiJ and J. NI-

CHOLS [2] also enables one to solve the pairing The distance between the initial model

problem. Let us also point out that we consider and the identified (or measured) models is assu- -

hecase where the modal sub-matrix i) is on- med small. In other words, the additional ma-

ly partly identified. (For example, lack of in- trices AM and AK are assumed to perturb slightly

formation corresponding to the rotation degrees the initial model. The perturbation are regular

of freedom, abbreviated by D.O.F., or the inte- and small in the sense that

rior D.O.F. inaccessible to measures.

a- the same number N of D.O.F. is retained;

Based on these data, we attempt to de- b - they produce small modifications of the ei- >.
termine the additional matrices AH and AK such (()

that the modiied model (a)genvalues A~ and eigenvectorsy ,I2.,n
i tht the modified model % M(e) A ; (e) + AK V Y

7Z
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In this case, the new model represen- - a rather clear separation between both sub-

ted by: ( m) - !( e ) + A K eA().L(t)+ , admit. spectrum characterized by the spectral sub-ma-

as modal and spectral sub-matrices trices A(e)(nxun) and A2 (e) (N-nzV-n). Among the

Yl() (e) ; AlI )^ I(e)AA !  (3) two previous relations, only (6) is exploitable
it leads to two methods of calculating the matrix

where : IAYI<<lT(e)lIlM(<<lAI(*)l. All

- In the case where the modal sub-matrix YlI Wof
Moreover, these matrices satisfy the order (Nn) is totally identified, we obtain the

orthonormelity relations : following by exploiting the orthonormality rela-

TY I w)M yl ).E TY)I (m)yl(a)Al (m)(4) tions (1) *

A T (a)e) Y1  -2(8

Let us now consider the set of N eigen-

vectors of the initial model represented by Y(a) The matrix A 11 thus calculated is one

(NxN) and the N corresponding eigenvectors of that minimizes the potential and kinetic energies

the structure represented by y(m)(11211). Expres- calculated by means of the components of the er-

sing y(m) on the basis Y(e) we obtain : ror vectors

" W . Y(O) [Z + A] . (5) C-y,-Yl (a) a 11V where yV )-y() and
Ts a e1 1V-A leV(e V being the vth coluan of the unity

The separation tnto to sub-bases, ma- matrix).

king the n calculated and identified eigensolu-

tions appear, leads to the following partitio- - In the case where the modal sub-matrix Y

ning: A A is partly identified, the previous method is not
~~~(a). 1ei.) 1.2 _(),(,1 applicable. Al is, therefore, expressed by the

1 ,, 2  1~ = ,2 ' .-[Y~ 2 :2 following pseudo-inverse

11_ Ty(e) (el]-I TY (o), (-) Y(e), 9The method is based on the following ASI  I I T (I ( I)- I () (9)

approximations

Pwhich is an approximate solution of (6) obtained

a)Ai1 Eso where Al and 13 are square m- by calculating the matrix A11 colun by column

atrices of order n. nd minimisinS the square of each IcI norm of

b) As2 I A2 I 0 ; relations which express that the error vectors :ev "AYV" ( a v- 1,2 ,' ''n "

each modal sub-matrix YI
) and Y2

(a) can be re- In the relation (9) zeroes should be introduced
presented with sufficient approximation in terms on the lines of YI(e ) and YI(a) corresponding to

of only the corresponding eigenvectors of the unidentified D.O.F.'s.

initial model :

Y(IW) . yie) [EI + A 111 (6) Taking into account the approximations

a) and b), the development of the orthonormality

Y2(m) . Y2(e) [E2 + A22, (7) relations (4) leads to the following relations

where EI and E2 are unity matrices of order n Al + TAi I AN Y (  0 (l0a)

and N-n respectively. From the physical view TY(e) A l(e)

point, these approximations are equivalent to : 2 I 0 (lob)
WNA (a) A +TA A i(a) +TYI (e)A i (a)

ajsimilarity of the number of half waves in A 1  1A 1( 1 (e) (Ila)

the correspondence between the n calculated and T2 () (e) 0 O (Jib)

mesured eigenvectors ; 2 '
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from which we obtain their common dominant blocks. The relations (12).

A i(e)- where C..M(e)(e4) (13) and (16) take the general form X.YI - D
A ~ II I

AK Yfe)-. where Gi Y (e)I (A (e) Where X designates 
LO

dominant blocks are %
The rectangular matrices C and G of or- to be identified, , '

der Nxn are immediately calculable and, as will Yl denotes a modal

be seen later, play the role of localization sub-matrix, and L J L,':.
matrices. Dc a known matrix.

3.2 - Exploitation of the modal equilibrium The localization is based on the fact

equations that, to each predominant block in X, there is a

corresponding group of lines of greater weight
We can do away with the previous hypo- in D

theses by direct comparison of the modal equili- c

brium equations of the initial model and of the The method consists of constructing,

model corresponding to measurements by means of the n column vectors of each of the

,,(e) (e) (e) (e) matrices such as Dc . a weighted sum vector whose

e1 - 1 I components are representative of the relatives
(K(e)+AK)YI (m)(M(e)+h)YI (M)A (m)=o (15) importantes of the lines of Dc.

By combining both equations we obtain Example : A perturbation of mass in zone I and

(m) (m)A(m)H herof stiffness in zone 2 will be revealed by the

where configurations of the following weighted sums

H - M(e)IA¥A(m)+Ye)MjI-K(e) AY (16) vectors
D.O.F

The rectangular matrix H, of order N.n, D .

is directly calculable and will also play the Zone 1 Components of the weighted

role of location matrix. sum vector corresponding

Zone 2 to C
The relation (16), not based upon any o

approximation, has all the advantages of an / ...D.O.F

exact relation. On the other hand, it does not lp

allow separating the predominant areas of AM Zone Components of the weighted

from those of AK. Additionaly, (16) is very sen- sum vector corresponding

sitive to measurement and identification errors, to GS~one 2I

3.3 - Localization of the errors of diacretiza-

tion D.O.F1

The relations (12), (13) and (16) enable IIComponents of the weighted

us to locate the dominant blocks of the matrices Zone IC ents otesweigr sum vector corresponding
ly. or jonl byr cmarig c and os- heng;,.,,~basically the same structure with respect to er- Zone 21,,

rors and they will be exploited either separate-
ly or jointly by comparing and cross-checking

, 74
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The determination of the zones and vity method [3),[4],[5], to reduce the distance

their limits (selection of the D.O.F.'s) is then between, calculated and identified eigensolutions.

carried out by arbitrarily setting two threa- The physical construction parameters on which we

holds on the components of each vector are working in order to obtain this adjustment is

limited only to those parameters intervening in
- threshold I is an arbitrary fraction of the the previously located, dominant areas of AMH and

maximum component of the sum vector considered,,, ~AK. This method enables us to construct a conser- .\

- the aim of threshold 2 is to eliminate doubts vative model of order N, whose first n eigensolu- Z i
resulting from approximations, numerical, expe- tions are similar to the n identified eigensolu-
rimental and identification errors. A D.O.F. tions of the conservative structure associated to

* will be retained if the corresponding component the real structure. By restricting ourselves on-

of the weighted sum vector is greater than the ly to the terms of the first order we calculate
2

thresholds I and 2. the sensitivity matrix S(n + nxq) by means of

the mechanical characteristics H(e); K(
e
) and

3.4 - Practical conditions of application partial dynamics characteristics AI (e)," YI(e).

This matrix links the differences of eigensolu-

- The n column vectors a V = 1,2,...,n of tions represented by the matrices A 1 and A

the matrix A condense information relative to regrouped in the vector b(n2 + nxi), to the vec-

eigenvectors differences. The matrix A is the- tor Ap/p(qxl) of the relative variations of the .. .

reby not very sensitive to measurement and iden- construction parameters.

tification errors.

The initial selection of these parame-
- The practical limits deduced from the test ters is carried out so as to satisfy the condi-

cases treated are as follows tion : q < n2 + n. We now endeavour to obtain the

V V < O.;jaiapproximate solution of the linear system b=SAp/p

(e V hr based on a criterion minimizing the squares of

T the weighted norm of the error vector c - b - S.%" ~alo T TevAlleOy and V, a ,,..n -'
]Iva Ap/p and of the vector Ap/p.

- The numerical simulation showed that the loca- 4.1 - Determination of the sensitivity matrix

lization obtained by direct exploitation of the

equilibrium equation (matrix H) is very sensi- Let us call the ith construction pars-

tive to small variations of the elements of the meter p. The igensolutions A ; Y(e) corres-

modal sub-matrix Y1 W In practice, it is logi- pond to pi. Let us call the first derivative of a

cal to think that noise produced by measurement, V quantity V . in relation to the scalar Pi" The- -

identification and numerical errors would lead VdifatioyV' n rlto otesaa i h
modification dp, gives rise to new eigensolutions

to an erroneous localization. Therefore, in or-
(e) (e) ?);Y 4.+Y d.Odp) (7

der to determine the matrix H, it is better to A(e) +A (e)dp2+O(dp (e) e)i O (dp ,(i7) 4 , I,

use the approximation of Y given by

" I!(m) ¥.(e) [E + All]. The simulated test Introducing the basis change

Y .A, ye obtain the following result af-
cases shows that this procedure leads to an ac- ,i =

curate localization. ter derivation of the orthonormality relations

4- DYNAMICAL ADJUSTMENT TA + .A + T¥(e) (e)y(e) = 0

We now endeavour by means of a sensiti- A A A(s) A Ty (e)K (e)y() ((e),
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Knowing M, K's), and assuming that teei- hs equations are gopdunder the form

gensolutions of the initial model are also

known, the matrices .A and A . would be easily AlVi(S)

calculable. x ,(e) IV(a)

According to (17), the variations of Ap.
~th th -i written:

the v igenvalue I e and the v eigenvec- =Pi. pi

tor y()will be written as follows a1 ba Ap

(a) 2
dV- 4'jdp 0 (di 1)a1 ia, where b and s.i are two

~ d~ dp) 12i 12 vectors of dimension

*dy % dp~ + 0(dpi) 2 where jay * AeV denotes - nn''1.

the v colum of .A.

Comparing the latter relation to the More generally, for q construction pa-

diffrent vetor y,~,givn by(3)rameters, we makea q modifications transforming
V ~the vector of the parameters p, of dimension q Ik

'1- YV(0) - YV,(a) . 1(e) aI we deduce from in p + dp. we can write to the nearest second

it to the nearest second order terorertems

(a q

where we note: a ( a ( 1 ; a 1 ; yv i % 2

TIT T
2. V jalIi ; i '21v) in similar manner as in the case of a

single parameter by using the hypothesis A 21-0 9
Conidein tht he caar A~an and considering that the scalar AX~e and the ~

*the vector a , v - 1,2,.. .,n, caracterize the vetral aktedffrne ewe h i

differences of aigenvalues and eigenvectors bet- ta oe n h dniidmdl eoti

wean the initial and identified models, the by-

pothesis A2  - 0 introduced in the first part q ~ (e) Pi

leads us to consider only the following sub- IV (0) i ,Te Iv,i 1i

vectors of dimension n : a I IV A,,% and jai I qAp V -1,2,...,nW

connected by the relation: a21 HV jal
i-I Pi i

-IV i all &i .(21) relations being grouped under the matricial form:

b -S AL (22)
Considering in (19) and in (21) respec- %

tively the n scalar equations corresponding to weebi etro ieso xnI

the a identified eigenvectors, and writing them, S - [sI; ... ; ...;u q1 a rectangular matrix of or-

i.e. (29) and (21) such that only dimensionless der ax (n4.2).q, §2a vector of dimension q.A
quantities appear, we obtain

Ax_ V i A(e) Ai4.2 - Determination of the solutions

V -Vo,2,...n The linear system (22) is assumed to he
811V pi Llivover-determined. In fact, the localization must
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allow keeping only a limited number of D.O.F.'s, - for m - 0, the square of the solution-vector

p.m and the number q of physical parameters around norm is not minimized, and the calculation gene-

these D.O.F.'s is assumed to be either inferior rally leads to physically inacceptable scalar .... e

to n(n41) or chosen so that it satisfies this values Api/pi
condition.

- for large values of a (or more precisely

In the strict sense, (22) admits no a>>19!det (YSS)I), the square of the error-vec-

e u o l etor norm is no longer minimized and the solution~exact solution ; consequently we ndeavour to

reach an approximate solution that simultaneous- vector no longer satisfies the constraint equa-
ly minimizes :tion (22).

- the square of the weighted error-vector norm The propounded solution consists of

-- P(b-S 4) where the matrix P, diagonal of calculating for a set of a values the correspon-

ordernx(n+l), definite positive, is arbitrarily ding solution vectors. For every vector
pa0

chosen and plays the role of ponderation matrix we then calculate the vector = S( . This

fixing the relative importance accorded to each vector b represents the estimation of the quan-

% of the elements of the eigensolutions ; tities (W/A ) and (a ), noted (A /)C and

obtained by means of the sensitivity

- the square of the solution vector norm . matrix S, when the parameter variation (Ap/p)
%p aL

is made. The comparison of these estimated va-

We are therefore led to minimize real riations with those desired (AX /IV and allV)

scalar function j enables us to determine the influence of the coef-

.j Tcp2 + a T p p ficient a on minimization.

p p

, where a is a positive coefficient arbitrary In practice, the q number of parameters

chosen and specifying the compromise between initially included in the calculation, is often

the quality of adjustment and the importance of physically superabundant. For instance a wrong

the modifications. modelization in a determined zone can be due to

the erroneous estimation of a single parameter,

The solution of t'is minimum problem whereas all the parameters of the zone are taken

leads to the solution into account during the calculation.

T " T 2 The numerical simulation shows that
4 )M P S +t ] E P2b (23)

when the value of a varies the scalars (Api/pi)

4.3 - Choice of a solution corresponding to the superabundant paramters pi
tend to change signs more frequently than the

The ponderation matrix P is determined others. The propounded method consists of elimi-

in terms of the physical nature of the specific nating the parameter (or parameters) showing the

case dealt with, i.e of the type of structure greatest number of sign changes and, by a new

and of the application envisaged by means of the sweep in a of recalculating the new scalar

dyaia oe.(,&pi/p.), corresponding to the only remaining t
parameters. We then use, as sensitivity matrix,

The problem that remains to be solved the matrix constructed by the columns of S corres- %
.'~pndn Tho thele remanit reainstometslves.

is the determination of an acceptable value of ponding to the reaining paramters.

the arbitrary coefficient 0. The examination of

N (23) shows the influence of this coefficient The procedures is stopped when the sea- '
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lars (Api/Pi), do not show more than one sign appears inacceptable to us, at least in the case

change. Among thaset of the solution vectors of large systems. A more econoical.solution is %

(Ap/p) of order r < q obtained during the last obtained by arbitrarily reducing the norm of the

sweep, we retain the solution (Ap/p),,e conaide- modification vector (4) * , i.e. by replacing
p a

red as the optimum one in the compromis between (ip/p)* by 0() * where 0 < I - in practice
adjustment quality and modification amplitude. p - 0.2 to 0.5 -. The additional, corresponding

chas -f 0.2 the 0.5r -. Theaddtinclctreponin
This choice, left to the user's appreciation, matrices of inertia and stiffness are then cal-
consists of judging comparatively : culated and the new eigenvalue problem is sol-

- if the values of Api/pi are acceptable, ved. These solutions serve as a starting point

to a complete iteration of the localization and
- if the estimated variations (A&NI/)de and adjustment methods.

( a l iv ) * a re c l o s e t o t h e d e s i r e d v a r i a t i o n s . 5 A P I T O

4.4 - Adjustment of the initial model

v a having been chosen, we car- The method was tested with numerical

The valuemodi cvin been thenitia simulation, first, on simple elements, then, on

ry out the odification (Ap/p)0on the initial industrial structures. We present 2 simulation

model. This modification conststs of adding, to examplea illustring its principle. We consider

the initial X( e ) and K ( e ) , the adjustment us- the axisymetric vibrations of a tank composed
trices of inertia (WOe and of stiffness (4),a of cylinders, ellipsolds and frustum of cones
defined by: modelised in 16 distinct elements and 140 D.O.F.'s.

r M(e) APi.

. *Pi ( )a Its matrices of inertia M(e) and stiff-
ness K(e) enable us to calculate the first seven

(AK)e ac r 3K ( ) (Ap . igenmodes of deformable body. We then dispose
i-I Pi e  of an initial model H () ; K ) whose partial

4.5 - Influence of the non-linearities

If the linear approximation introduced 2
in the sensitivity method is acceptable, the es- 'J. -

timated variations of the eigensolutions i.e., )

those specified by means of the sensitivity me- --- Liquid level

trix (b) S () , must be close to the

effective variations obtained through calcula- '5 .

tion of the exact solution of the new eigenva- mass

lue problem defined by the matrices : " spring 6

. Internal node ,*
' (ae) K(e) !A~.. , 9

i'e)+ (A14). K +(AK)*.

The observed differences arise essen-

tially from the non linear terms that link the

effective variations of the eigensolutions to the

variations of the parameters. The introduction of a.1.'5. -

the second order derivatives would notably limit

these differences, but the resulting complexity
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dynamic behavior is characterized by the diago- ye show their relative variation.

nal spectral matrix A1 () of order 7 and the rec-

tangular modal matrix YI(e) of order (140 x 7). (- )i represents the initial relative variation,

The matrices YI(a) (140 x 7) and AI(m) (7 x 7) i.e. the relative differences between the

simulating the measurement results are obtained eigenvalues of the initial model and of

by calculating the first 7 eigensolutions of the the simulated identified model.

simulated identified model constructed by intro- t f l av r i
ducing amdfctoinheinitial model. In (_) representsthfiaretveaitonthis example, this modification consists of re- i.e., the relative differences beteen -"

ducing by 20% Young's modulus of elements II, 12 the eigenvalues of the modified initial -"

and 13. model (M(e)+(MoC; K(e)+(M6*) and of

the simulated identified model.

In this case, the adjustment mthod mut

therefore enable us to solve the following pro- ,igenad(e)(lb)/

blem. Knowing :

a) the first seven eigenvalues and eigenvactors I 33.15 -13.6710
- 2 _2.231072

(with 36 D.O.F. considered as unknown by eigen- 2 37.09 -14.3110 - 2  -0.25107
2

vector) of the simulated identified model, 3 39.05 -15.79102 -0.78 10 2

4 6.15 -19861-2 -I11-2

b) the matrices of inertia and stiffness, and 4 40.15 -19.860 1.1810

the first seven eigenvalues and eigenvectors of 5 41.11 -18.93107
2  -1.4810-

2

the initial model, 6 43.90 - 5.0610- 2 -0.671072

is it possible to determine 7 60.72 -10.58I02 -4.5710-2

a) the regions where the initial model differ b) Adjustment of the eigenvectors : their diffe-

from the simulated identified model, rence is characterized by the quadratic form c.

associated to the matrix M(e) and formed by means
b) the parametric modifications to be realized of vectors Ay, . yV(n) Y*(O)

in the initial model in order to reduce simulta-

neously the differences between A and A(i) 1,2,..., 7 % T 2on te on han . ...I( A7 cv " ~ v M e  AyV .IA,,.l
on the one hand, YI(e) and YlInW on the other

hand.

Eigennode (v ,)ic

The localization procedure underlines -2
very clearly that the initial model and the simu- 35.7910 6.71102

lated identified model differ in the regions of 2 72. 1910 -2  18.12i0 "2

elements 11 and 12. The results obtained by ap- 3 86.5910 -2 64.0310 -2

plying the parametric modification method to

these two elements are regrouped on the table 4 56.23107
2  63.7910

-2

below. 5 38.27102 29.6110 -2

6 23,49102 3.0110
-2

a) Adjust5"nt of the eigenvalues. By
7 31.8210

- 2 10.3510
- 2

78v- ,, 2 ... , 7
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V- The simulated identified model is characterized

15by the following dimensions

io- (AXV/XV~i te. - • ; 1. - 1 ; for i = 1, 2, .. , 20

The following results are obtained with one ite-

1 ( XV/)f ration

! I 4 5 7 a) Adjustement of the eigenvalues :

mode number

Mode (AV/X 'V )'vf e

1 -7.71 10,2 0.69 10
- 2

2 6.01 102 0.09 16-2

40 r ,3 3.52 10-2 -0.17 10-2

20- ( 4 2.24 10- 2  0.24 10-2

1 4 3 -0.03I0 -0.031
mode number

These results are obtained without any

iteration. The'second example is a cantilever b) Adjustment of the eigenvectors

beam in transverse vibrations modelised in 20

elements with 2 D.O.F.'s per element. In this -

case : N - 40 ; n - 5. We call the thickness V I 4
)

and the width of the ith element ei and i res-

pectively. The initial model is characterized 1 2.80 10- 2  10

by the following dimensions : 2 11.5410 0.6310
0-2

.i •e for i - 1,2,...,20 14.82 1
0 2 0.69 10- 2

I. - I for i a 1,2,...,10,17,...,20 4 8.24 107 2  0.43 10-
2

I i = 1.4 10 for i = 11,12,...,16 .5 10.37 10- 2  0.49 10- 2

The repartition of the width and the thickness of the three models is described beiow

Width
1.4

1.3'

"' C I
1.1 I

20 to is 17 16 15:14 13 U I 1 10 8 7 6 5 4 3 2 1 %'_
0. Number of the elements %--

so 2
80
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%

AThickness

.1.2

20 19 18 17 16 15 4 3 1 12 LTrt*1  9_ I 7 6 5 4 3 2 1

S0.9 Number of the elements

o,.

Initial model (
(e )  K(

e ))

____ :_ Simulated identified model (N( ' ) ; 3
( M)

------- Initial model adjusted by the method (N( e ) + (M) * K(e) + (Ag*) )
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FIRST-PASSAGE FAILURE PROBABILITY IN RANDOM VIBRATION

OF STRUCTURES WITH RANDOM PROPERTIES

N. Nakagawa, R. Kawai
Faculty of Engineering, Kobe University

Kobe, Japan

and

K. Funahashi
Kawasaki Heavy Industries, Ltd.

Kobe, Japan

The first-passage failure problem is treated in random vibration
of structures with damping, considered as a random variable.
First, nonstationary responses are generally analized for random

S" vibration of structures, which have random properties. Using the
derivative method, statistical values of responses ( mean func-
tion and autocovariance function ) are obtained. Thereafter, the' first-passage failure probability Is considered. It is assumed

that a structure with random properties is subjected to a weakly
stationary random excitation. Applying the average technique, the
Fokker-Plank and the Kolmogorov backward equations are derived.
Then, the first-passage failure probability is obtained. From nu-
merical examples, it is found that it is necessary to consider the
influence of the structural random properties, since it increases
the first-passage failure probability.

INTRODUCTION a symmetric two-sided barrier has appear-

ed in the papers by Yang and Shinozuka

In a structural response analysis, [1,2]. They have used the point-process
the ultimate purpose in using stochastic- approach. Gray [3] has investigated the
process theory is to know the reliability moments of the distributive function of
of a structure which has been designed to the first-passage time. Lennox [4] has0 badthe dist ributioy nlp functonssof

withstand random excitations. In the sto- obtained the distribution function of
chastic treatments of structura responses, time. The influence of the critical bar-
the first-passage failure probability that rier's height on the value of Pf ( the
the absolute value of a random response probability of system failure ) was stud-
will go beyond a safe domain for the ied, in a nonstationary random vibration,
first time, has been extensively under by Roberts [5]. But, in these literatures,
investigation because of its close rela- the random properties of structures are

- tionship to the safe performance of sys- not considered. Authors [6-8] have inves-
tems. tigated the longitudinal vibration and

impact waves of an elastic bar, with ran-
Structures have random properties dom properties, and the impact waves in a

with respect to the cross-sectional area viscoelastic bar, with stochastic proper-
and mechanical properties etc. owing to ties.
errors in the manufacturing, heat-treat-
ment, and measuring processes. In order This paper treats the first-passage
to judge the reliability of structures failure probability in random vibration
more exactly, it is, therefore, necessary of structures, with random properties.
to treat the first-passage failure proba- First, nonstationary responses are gen-
bility under consideration of randomprop- erally analized for random vibration of
erties. structures, which have random properties.

A excellent summary for the problem The stochastic differencial equation of

of a stationary narrow-band process with the system is described. Using the de-
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rivative method, the statistical values Letting x(O)-O as the initial condition
of responses ( mean function and auto- without loosing the generality, we obtain
covariance function ) are obtained. The the solution of Eq.(l),
damping coefficient is assumed as a
structural random property. As an exam- x(t) t F(')h(t-) dT (2)
ple, the responses of a single-degree- o
of-freedom system are calculated. This
system consists of a mass connected to a where
Voigt model under a white noise excita-
tion process. It is found that the stand- exp(-C+j4 )w-t
ard deviations of responses increase with h(t) ,,-rW 6m
time and become constant after a long1 (t:O)
time. The contribution of the structural (3)
random property to the standard devia- -0 (t<)
tins of responses is ascertained.

and

Thereafterthe first-passage 
failure

problem, which is the main theme in this a -
paper, is treated. It is assumed that a
structure with random properties is sub- Considering the random properties of
jected to a weakly stationary random ex- structures, the response is written as
citation. Then, the standard deviations follows.
of responses are derived. Introducing the
change of variables of the amplitude and x(t) - E[x(t)] + Ax(t)
the phase, the elementary second-order a (4)
equation is replaced by the two first- x(t) T - x(t)Api
order equations. The analysis is a ex-
tension of Lennox's analysis. Applying
the averaging technique, these equations where E[] is the mean function of [-
are simplified and the Fokker-Planck e- and Pi is the statistical parameter.quation is derived. Furthermore, the adP stesaitclprmtr

Komgrvcwr quation is obtained. FutemrteConsidering Eq.(2), the impulse response
Kolmogorov backward equation Is obtained. function is rewritten as follows
After the Kolmogorov backward equation is
solved, under the given initial andbound- h(t) - E[h(t)] + Ah(t)
ary conditions, the transition probabil-
istic distributed function and the first- Ah(t) - Z ah(t) (5)
passage failure probability are obtained. api r
Numerical examples are calculated and the
first-passage failure probability and its E[h(t)] - h,(t)
density are obtained. Decreasing the bar-
rier value, the first-passage failure pro- Hence, the mean function and autocovari-
bability becomes greater. It is found that ance function of x(t) are
it is necessary to consider the influenc
of the structural random properties,since
it Increases the first-passage failure Eox(t)] I(
probability.

NONSTATIONARY RESPONSES IN RANDOM x
VIBRATION OF STRUCTURES x E~h(ti-T)h(ti-Ta)ddT2]

General Analysis otl1tZXh,(t..v)h(t 2 -T2)dTldT2
Io Io K F AhtiT)Ah(ti-TI)dT~dT

Consider the nonstationary responses 7)
of structures, which have random proper-

ties, subjected to random excitations.
The equation of motion to a single-de- If F(t) Is a Gaussian random process,x(t)
gree-of-freedom system consisting a mass becomes a--Gaussian random process, and
conected to a Voigt model under random then moment functions higher than the
excitation F(t) is second order are equal to zero. The Gaus-

sian random process is completely defin-
3. (t) + 2 t) + wix(t) -.l--F(t) ed by Eqs.(6) and (7).

where (1) Letting the first term of Eq.(7) be
w KxF and the second term be Kxp, we ob-

Sw k/m, r -c/2mwo tain
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Kx(tl,tg) - Kxp(tl,t2) + Kxp(t 1 ,t2 ) where

(8) d

E[Y 2 1W30 2
Responses to Nonstationary Shot Noise KxC(tl,t2 ) = 4m 2 2 0

Excitation d

Although the nonstationary shot- xj t 2- 1)e 4 0

noise process is simply mathmatical Idb- 2
alization, Justifications of such analy- x[(AIAT+A3T ) cos dT1
sis to real problems have been found.

A nonstationary shot noise is given + (A2+A5T1+A6T)

*by
N xsin wd T + A7 cos Wd(t2-

F(t) - I Yi 6(t-T )

tl) X T, + {A8 cos d(t 2-

E[F(t)] - 0 (9) tl) + AQ sin wd(t2-tl)

K(ti,t) - I(tO) 6(t 2 -t1 ) Cos W (t-t

- X(t) EY 2 ]6(t 1-t ) 10  d 2 1

where + A1 1 sin wd(t2-tl)]dT l(t~t I ) (12)

N(t) Poisson process with either
stationnary or nonstationary (See Appendix I)

increments
Y independent randam variables

with zero mean value Responses to White Noise Excitation
I(t) : intensity function of a shot

noise A shot noise, which is weakly sta-
A1 : expected nonstationary arrival tionary random process, becomes a white

rate noise because this random process has a
6(t) :Dirac delta function, constant spectral density. Examples of a

Then,statistical value of responses weakly stationary random excitation areare excitations of an automobile, travelling
at a constant speed on a road having a
weakly homogeneous random roughness and

E[x(t)] = 0 (10) excitations which engines exert to the
basis in steady motion.

xAVttlh0(t-0-1)A white noise is defined by the fol-

x h0(t2-T1 ) dT1  lowing properties.

ElY 2
] e_ W0(t1 +t 2 ) E[F(t)] -0 J(13)

2m Wd KF(tl,ta) - 2iK6(tj,t2)

x[cos Wd(tlt 2  X( l))Jt1  The autocovariance function of responses

xe 2 w0T1 dT1 -f '(T 
)  are

e2 0l cos wd(t +K2 KxF(t'tz) = 2mZwowr [cos Wd(tl-t2)

-2Tl) d I  
x e-__(ti+t2)(e CW t1 l) WO

x (e-wo(t1+t2){-Cwo cos Wd(tl+t2)
(t 2  t I  (11)
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+ w sintion process,
;. si dat+t) spectral density O(wa) -K (a constant)

x { -Cw oo0 Wd(ta-tx) (16)

+ W id n wd(t2-tO)IM (14~-a) Values or statistical parameter and un-
d d damped natural frequency of the linear

ir~tg2) KwCOC [ Ale cos wdsystem are
K1 ~(2mta c U EEC] - 0, ac 0.01 and we - 1 rad/s

d
The standard deviation and the auto-

x (t2-t 1 ) + A,, sin wd(tz-tl Z1  covariance of responses to the white
d noise excitation are illustrated in Fig.

4+ ( As cos wd(t2-ti) + A, sin wad

X (t2-t 1 )} Z,4' A7 Cos Wd(t2-ti)Zs

+ Aa*Z* + AZs + AsZe 4' AIZe +U

+ AiZ7 + AsZ9 (14I-b)

( See Appendix II )
Setting t1 stlin Eq.(lJI), we obtain the -
variance of responses,

XF 2m'w~w1 Wee~t)~'
d Fig.l-The standard deviation of re-

+ -2CwOit ( -cecs2 sponses to a white noise ex-
d itation.

+' w d sin 2w dt )J(15-a)

KwG - 0- + '1~ + ---.1 4' ,Z
xP 2m' wd

+~ P. it A.

4AaZ.4' A Zs 4 AGZs + AiZe .

wher + M 7 + AIZe .) (15-b)

where
A, ia , Aau sw A wd isi

*0 A, * --0 , A. T,1 - -Ax.

A7 1 A 0
Cd , Wd Fig.2 -The autocovariance of responses

It is found that the variances are inde- to a white noise excitation
* pendent on t as t approaches +a. in Eq.

(1~4).

1 and Z. In the case of the white noise
excitation which Is the weakly stationary

NUEIAL EXAMPLES excitation, the standard deviation of the
response maintains constant, after a def-

Randm rsposesof the next example inite time. In fig. 1 the broken line de-
were calculated. In a white noise excita- notes the standard deviation of the re-
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sponse, when the influence of random + 2.wA r(c-)FcA
property of the structure is neglected. d
The standard deviation of responses ow- . .
ing to a only is also shown in Fig. 1. + 2A, + CwoAs + 'wJIAo#,

The autocovarlances have the frequency *( V +V ) W#V(wo) (21)
nearly equal to the undamped natural fre- -C

quency of the system and it is,therefore, (See Appendix III)
supposed that the spectral density of the e n
autocovariance becomes greater when w
tends to we; Indicating this the proper- Let the envelope process of the re-
ty of the white noise model. sponse be a(t) and the phase angle be

#(t). When c is small, It can be consid-
ered that the response is given as fol-

FIRST-PASSAGE FAILURE low$,

The important problem in using sto- x(t) * a(t) cos( w0t + *(t) ) (22)
chastic-process theory in a structural-
response anslysis is the first-passage i(t) - -a(t) we sin( wot + #(t) )
failure problem. This problem treats the (23)
failure created when the dynamic response
at a critical point in a structure, Substitution of the following statitical
reaches for the first time, either an up- values of C:
per bound level or a lower bound level.
In this section the first-passage failure
of the structure, subjected to a weakly C - (1+e) E(C]
stationary random excitation, with random
property will be considered. E[C] - 0 (24)

Fundamental Equation oZ - E[(-E[C]) ]  I
The equation of motion of the sys- into Eq.(17) yields

tem is

2(t) + 2cwsi(t) + wix(t) -=(t) (17) 1(t) + 2E[C]w9(l+e)i(t) + wix(t)
m

= FM (25)
When F(t) is a wide-band excitation, the m

mean function and the autocorrelation
function are Using Eqs.(22) and (23) we obtain

E[F(t)J - 0 (18) a - [ -cwma(l+e) (Iwom
E[FCt1 )F(ta)] - K(ti-ti) (19) - cos 2(wot+*)) - 1(t) sin (wot+#)]

(26)
Further, the specral density function is a; C 1 CwIma(l+0 sin 2(wot+*)

(w )  j -K(ta-t 1 ) e-Jw(tl-tl) - F(t) cos (wot+*)] (27)

x d(ta-ta) (20) (See Appendix IV)

When a lightly damped single-degree-of- Fokker-Planck Equation
freedom system is subjected to a wide-
band stationary excitation, the station-
ary response is a narrow-band stationary If the absolute value of the exci-
process. The response has, therefore, tation F(t) Is not so large, the envelope
zero mean function and the following var- process of response changes very slowly
iance. and it is considered that both a(t) and

W*W,) W020 (wO) - *(t) change little during the first pe-
F+ ),-;, riod 0 ~t<2w/we. Then, by using the aver-

Ox 2am dm" ageing technique into Eq.(26) and (27),
we obtain

+ C'(2C2-l)w0A, + owswOdA;% a(t) -Cw0a(l+¢) - ( F(t)/wom )
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Introducing the nondimensional quantity
x sin (wot+*) (28) r-a/ax, Eq.(34) becomes

and - -c w(l+e)r + 2r1Sm(" +V

i (t) = - F.--F(t) cos (wot+) (29) 1

-mv#m D(t) (37)
By using the ensemble average and the
fluctuating components, the terms con-
taining the excitation process are re- Using Eq.(37), the Fokker-Planck equation
written as follows, can be given as follows,

(F(t)/wom) sin (wot+*) = ml(t) + vl(t) L wo(l+c)( r
3Pt{r} a r

(30)
and 1

2 um 2m(V +V )r} P(r)
(F(t)/woma) cos (wot+*) C M(V C)lPr I

= m2(t) + v2 (t) (31) + 1 2

where 2wm 2 (VF+VC) 3P{r) (38)

mI(t) = 2 + stationary term,
2am+ where p{r}(r,r; t,t) is the transition

probability density of r(t).
m2(t) = 0 + stationary term

Omitting the stationary term in Eqs.(30) First-Passage Failure Probability
and (31) gives

From Eq.(38), the Kolmogorov back-

(t) = -;w a(l+c) + -() v1 (t) ward equation is
2aw o m'

(32) = - =w(l+c) { ro- 1

and 2Cwjm 2 (VF+VC)ro

*(t) = -v2 (t) (33) x r+ . 31(V(39)

+1r 2____2 __ 
2p _ (,

The response process to the wide-band F C
noise excitation becomes the narrow-band,
if the correlation time of the excitation In order to simplify the analysis, the
process is smaller than l/CW0(l+E), since following change of variables is made,
the relaxation time of the envelope pro-
cess, in Eq.(32), is of order l/Cw0 (l+e).SHence, the fluctuating component v(t) SO= -!:__ r o , a(i) Cw=o t scan be regarded as the delta correlation a r x ' '

process and we obtain

a-wa(l+)+ ) - _
- -  b - cax and V- 2¢Cwm 2 (YF+V ) (40)2am" womx

xD(t) (34) where b is the threshold level.Equation (39) now becomes

a n d - -_- +s_
- /1~p~(O) Dt) (5) *i= -(l+C){(S,- 1

D(t) (35) 2(I+)VSo

where D(t) is the delta correlation pro- V a(41)
* cess, i.e.,

E t t When P(S0 ,T) is the transition probabili-
E[D(t)D(t+T)] S() (36) stic distributive function given by the

*, i transition probability density p(S,So;ToT.
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we obtain 3p _p 2
a - (l-y) + y (48)

P(s., -f p(SSo;r,,.) dS

and Initial and boundary conditions are

To 0 (42) P(yO) I 1,

The initial and boundary conditions are p(1+0 /)),V
set as following, 2 t1 ) ''0

P(S0,O) I 1 and

P(So,-) " 0 P(0,ti) <(43)

P(l, T) J Using the technique of separation of var-

Integrating Eq.(41) with respect to S P(y,t,) = Y(y).T(t,) (50)

gives
we obtain

-p -(+) (S l+)VS B
"as (1-Y) -L + Y-Y-= -X (51)

+ 1 92p (44)T Y

C1V aSi where the dot denotes the differentia-
tion with respect to the time tj and the
prime denotes the differentiation with

Thereafter, consider the statistical respect to
parameter e. Approximating From Eq.(51) we obtain

C I A (45) T a Toe-At, (52)

we obtain yY" + (1-y)Y' + AY - 0 (53)

-P -(l±!i) (SO- 1 The series solution of Eq.(53) is the
C as confluent hypergeometric function given

(as follows:+ _j a'P (46)
a 2V as20 Y - 1F1(A,lay)

- (-A)(l-A) .... (n-l-)
It is considered that the probabilistic - + (nl)
distribution P exists in the region n-i
bounded by the two solutions of Eq.(46). (54)
Since Eq.(46) indicates two equations,
each one, with different coefficients, Using Eq.(49-2), the eigenvalue A is ob-
the first equation will be treated. taned from the next equation, A

The introduction of the following (l+0 /)aV
new parameters, IFI(-AnI, ) 0 (55)

(l+0 A/)MzV 21
y -Si

2 (47) Hence, the general solution is

t - 2(1+a /4)T P(y,tl) - IF,(-An, ,y)e n

leads to the next equation, (<Yl C ) (56)
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Coefficients 0n in Eq.(56) are given by

Eq.('19-l). Thus, the required distribu- d'~
tion function of the first-passage fail- bL &

* ure probability is obtained by the next
equation,

I b". --A ...0.2 amie
F(y,t1 ) = 1 - P(y,t1 ) (57) ... 0

and the first-passage probabilistic den-

sity function is h_'%.,

00 f(y,tS) 0 25(-3,l3y)e-An6t i 0 s 30 35 40

l+o / )c 2 V Fig.3 - The first-passage failure
( 0<y< ) (58) probability distributive " '

2 function

* The moments are 
-4.

mkmk =i ti f(y,tj) dt, (59) r

NUMERICAL EXAMPLE AND DISCUSSIONS
b- 4

The following values were used in
order to calculate the distribution func-
tions and the density functions of the
first-passage failure, OA L

E[c] 0.02, c= 0.1 .E[], %

wo = 2 rad/s, b.26

initial conditions: t-0, x(0)=O, b-S

%~~ t o 2D" . -'
and T S 0 " "'" .1'

threshold value: b=ox, 2ax and 
30x Fig.4 - The first-passage failurex xprobability density .''

The first-passage failure distributive pobiy e t
functions are illustrated in Fig.3 for

* the threshold values, b=o 2ax and 3ax. portant for this value.
*: When the threshold value is taken to be

small, the first-passage failure distfi- The first-passage failure proba-
butive function increases rapidly to 1. bility functions are shown in Fig.4 for
The results which neglect the influence three threshold values, b=ox, 2a and
of the structural random property are The density function has the re-
indicated by the broken lines for three x
values, respectively. These lines exist markable extreme value for b=o
between the solid lines obtained for x
- -o.lE[c]. Yang and Shinozuka [1,2] -. 4.,-I..

have investigated the first-passage fail- REFERENCES
ure problem by using yhe point process
which was assumed by the Poisson, Psedo-
Gaussian, and Marcov types etc. They have 1 J.N. Yang and M. Shinozuka, "On the
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AppendixIx

A1  B 1  C.A(t1 ~a +-j~ 1 .a DZs(ti,ta) - -
A, B11 - 2 YVttz)2C W

_! P 2-CWO(ti-ta)-
Da xce

22

x sin Wd(ta-t1) + 1AdCos W (t2-tl))

t 1 t)-1 e-cwqt+t 2 ) (cw sin w (ti+ta)
As

A 2N + W d Cos W d(t+t))

C D ~~~~~Z1(tista) -_ (jt~_W(1t

A s F - -f ( 1 t )x ( c s i n w d ( t i t 1 ) + W

A, - Bos 1J(1 + 2  +.Ltt) x05 d(t2-tl) + e.W4(t2at0)C

Ais Bi (t~ tl) YJ A t,4 2)2X ( Ww1-wa) sin d(t zt )%
- Ea F + 2cwswd Cos Wd ta-ti))- I(ti+ta) ~

At Ei SL~1t) I

j~qw w w w w- .- ~-91 ~
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* e-CwO(t1+t2)(cwe sin w d(ti+tt) x sin wdt + 2 CwSwd 005 wdt)

* Wd CoB w~ (t+2) -;Ot~2 G&Wt t11 eCw~t (-Coa CosB Wt

a (cwl-w2  sin w ~(tifta) + wj sinl wdt .l.Wt(a 2)

* 2 Cwgw d Cos w 4 (ttl)} X CO w dt - 2Cww d si w

x co CSwd(t2..ti) - wd sin wd(ta-t1)) Appendix III

-- _w~'t2{w o d~t~s Let Rg(ta-ti) be the auto correla-
tion function. When t-, we obtain

*-wd si w d(ti+ta))

Z,(a~a) m2(t~e((tt0 - E~lt]- R (0)

" {cwo CoB Wd(ta-ti) - sin w d(ta-ti) -F..I~)
2*(~ w(0

" "d) +. e -COt f0(C2Wi.W1) where H(w) is the transfer function.
We d In the case of a wide-band noise where

"Cswd(ta-tl) -2snwd(ta-ti) the specral density function changes
CO d slowly near at w-tw,( undamsped natural

frequency ), the value of the spectral
" Cwow d - (t1+ta)eC6t+2 density function can be neglected in the

d WI region far from w-±bi,. For C<< 1, we
" {(wo CosB Wd(tl+t2) - sin od(ti+ta) can rewrite Eq.(60) into

d eCoX1t2(CW # *P~b _. IHwI 2 dw (61)

" CoB w d(tl~ta) - 2 4wolid Using Eqs.(61) and (15), we obtain Eq.
(21).

" sin Wd(ti+ta))

ZS(tl,t2) - (t1+t2) GI(t 1 +t2) Appendix IV
1

- (t-t 3 )G1(t-t1)+ ~Differentiating Eq.(22) with respect

" Z5(tlt2) + WdZ7(tl,t2)) +1 to t gives

" {C22_W dwei(t) a cos (wet+*) - awesin (wet+*)
0x f(2 iw)ZWti,t2) + 2Cwowd - ia sin (et+#) (62)

" ZG(t 1 ,t2)}
Letting Eq.(62) be equal to Eq.(23), we

Z,(tl,t2) - (tl+t 2 ) G2 (tl+ta) obtain

- (a-1)0 1(a-,)0 cos (wet+#V) - ;a sin (wet+*i) - 0

* Z7(t 1,t2) - WdZs(t1,ta))}+ _W (63)

* {_C2WJW2) G~tltl)Further , defferentiating Eq.(23) with
x s~ida respect to t, we obtain

* 2 CwOw d Z4(tl,t2)) 31(t) - -&wo sin (wet+*) - aw,(w@,4)

GI~) -_Cw't onwt x cos (wet+*) (614)

A 2) Substituting Eq.(64) into Eq.(25) and
+ wi Cos w at) Jftewt(Cw~a using Eq.(63), Eq.(27) is obtained.
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FATIGUE

FRACTURE MECHANICS APPLIED TO STEP-STRESS FATIGUE
UNDER SINZ/RANDOM VIBRATION

Ronald G. Lambert
General Electric Company

Aircraft Rquipment Division
Utica, new York 13503

A proposed cumulative fatigue damage law is derived
which uses fracture mechanics theory as its basis in order
to predict the fatigue life of structures subjected to
several levels of sequentially applied stress. The pro-
posed law applies to all initial crack (i.e., flaw) sizes
in the structure. The proper boundary condition to be im-
posed at the interface of the two stress regions is
analyzed.

INTRODUCTION to include the effects of initial
cracks in the material being stressed.

This paper deals primarily with pre-
dicting fatigue life and/or probability FRACTURE MECHANICS
of failure of structures with either
known or undetected initial cracks Linear Elastic Fracture Mechanics
(flaws) that are subjected to step- theory will be used for this analysis
stress sinusoidal or random vibration, to relate applied stress, crack geo-
An example is an electronic assembly metries, material properties, and crack
(e.g., an avionics computer) that is growth. Fig. 1 shows a particular load-
first subjected to a laboratory random ing and crack configuration. The speci-
vibration acceptance test and subse- men width is 2b. In this article, the
quently subjected to the in-flight ran- crack half-length, a, will be referred
dom vibration of a high performance jet to as the crack length to simplify the
aircraft. wording. The actual crack length is,

2a. The stress away from the vicinity
Initial cracks (flaws) either exist of the crack is S. AS is the stress

in the structural material as disloca- ranger that is, it is the double ampli-
tions or metallurgical inclusions or tude of the sinusoidal stress variation
are introduced during manufacturing fab- with time. Static stresses are not
rication or assembly operations. Ini- included. Y is a dimensionless geome-
tial crack sizes can range from micro- trical parameter that depends on the
scopic to macroscopic. Such initial dimensions of this particular config-
cracks reduce fatigue life. The larger uration.
the crack size, the shorter the fatigue S
life.

In some cases relatively large ini-
tial cracks go undetected for a variety
of reasons. In other cases it is in-.r_
practical to repair the crack or re- Y AIseA
place the part even if the crack is de- + 37I
tected. These situations occur fre-
quently enough to be of practical impor-
tance. Fracture Mechanics is the study
of a material's ability to withstand
such initial cracks and not fail catas-
trophically. Existing cumulative s

61 fatigue damage laws (e.g., Miner's Fig. 1. Center Cracked Strip Loaded
- linear cycle ratio law) do not attempt in Tension
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see We )/2 The crack will grow in a stable
T (1) fashion until A1 reaches the material's

2b critical value Mc (fracture toughness)
at which time the crack growth becomesThe stress intensity range At is a unstable and the part fails catastroph-

function of Y, AS, and the crack size. ically. Table 1 shows several typical

A1 - Y as /- (2) material parameters.

Eq. (3) can be integrated by substi-
tuting Sq. (2) for aK, by separating

HPa V -re (ksi 457) variables, and letting 0 and Y be con-
stants. The case of interest for this

Fig. 2 shows a typical cyclic paper is for 6 > 2. The result is
fatigue crack growth rate curve as a
function of stress intensity range. N N 2
is the number of applied stress cycles. CoASYe(-2) (4)
There is a threshold value AKth below
which cracks will not propagate. Eq. -. 2
(2) indicates that AKi (the product of 2]
T, AS, and the square toot of the ini- - cycles
tial crack size) must be less than AKth
for the crack to be in the nonpropa-
gating region. For larger values of
At, the curve becomes a straight line or
on the log-log plot. This is the
stable crack growth region. The F 0-2

governing equation is that of Paris 1, 1 -(5

1 10 100 loco 2
10 (8-2) co 0  V etr (inches)_~ I 40

UNSTABL.E CRACK

10-3 IPROPAGATION where i = initial crack size size0 I o2 (length)

STABLE CRACK a -crack size at N cycles
So- PROPAGATION It should be noted that these equations

9! - 0I-4  apply in the stable crack growth region

(I-e., aith <At < 6160)
The critical crack size ac where

10 - unstable crack growth occurs can be
-10-6 calculated using Eq. (5) by letting N -Xf w h e re IN is t h e c y c l e s a t fa i l u re

A (i.e., infinite crack growth rate).

NOO9AG0TG (,):a~can also be calculated using Bq.

s. I f NONPROPAGATING i

FATIGUE CRACK

10 I 100 1000 ac (6)

STUSS INTENSITY RANGE (A , MPe (6

Fig. 2. Typical Fatigue Crack Growth EXAMPLE 1
Rate as a Function of Stress

Intensity Range For the configuration shown in rig.
1, calculate the critical crack length
and cycles to failure for the stress

d c (K) 6  metre/cycle ranges of 69 NPa (10 kei), 138 EPa (20 8
o  )O /c3 ksi), and 207 NPa (30 ksi). Also calcu- ..

late the crack size versus cycles for
(in./cycle) AS a 138 NPa (20 ksi). Calculate /ac

versus W/Uf for the above three values
where 6 and co are equation constants. of stress range.
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TABLE 1. Material Parameters

__ _ __ _ _ AK 0  _ __ _ _

material 0 (m/cycle) (in./cycle) MPa a (ksi /T1i.)

A-286 3.24 2.8x10-11 1.1zi-9 132 120

A 471 CL 4 1.4 7.4210-14 2.9x10-12 220 200

Cr-No-V 4.09 9.2xi0- 14 3.6x10-12 33 30

4340 4.65 5.0:10-14 2.0O0-12 55 so

7075-TS 4.00 1.5x10-10 6.0x10-9 22 20

Given: , 0.4

Material 7075-T6 Aluminu Alloy 9

2aj = 5.08 mm (0.2 inch);
2b - 127 mm (5 inches) 8 ac .10miO 0.319n. 0.3

Refer to Fig. 1 and Table 1 7/
AXc "22 HPa (- L20 ksi /-7"n..)j_ 6 -/A-th-2.2,He, - (2 ksi 9fi.) "6 0,1 n
co - 1.5 ,.10-10 u/cycle 0.21
(6.0 0 - in./cycle); 0 - 4

Y - 1.77 from Eq. (1)

4 AKi - 6.2 NPa f- (5.6 ksi /r'T.) 3
for AS a 69 MPa (10 ksi) 0.1

Axth <A <AKC c 
I

Therefore the crack is in the stable 1I
propagation region. 0I

AS a Nf 0 20 - W Mo 6W 001 IM
(NPa) (ksi) (mm) (inches) (cycles) CYCLS, N 71

69 10 32.5 1.28 1.57 x 1;4 Fig. 3. Crack Size versus Cycles for
138 20 8 .O 0.319 729 AS - 138 MPa (20 ksi)
207 30 3.61 0.142 62 levels of step-stress until the criti- - -

cal value is reached and the partIt can be seen that ac is inversely re- fails. The previously described frac-
•ated to 4S. The crack size versus cy- ture mechanics equations will be used.
cles for AS- 138 NPa (20 ksi) is shown Fig. 5 shows crack growth to failure.
in Fig. 3. Fig. 4 shows the relative for both levels of step-stress ASl and
crack size versus cycle ratio for three A82 applied independently. Fig. 6
values of AS and an initial crack size shows the crack growing from an initial
a of 2.54 =m (0.1 in.). It can be value ail to al after N1 cycles at AS 1 .
seen that a/ac is dependent upon AS. .11k

Examination of Eqs. (4) and (5) shows The stress level is then changed to
that both a/ac and N/Nf are dependent AS2 - The initial crack size ai atupon 6. Therefore , cumulative dmage stress a 82 is the sae as the nalalaws such as E (a/ac) - 1 and I (IR f ) crack size al after NI cycles at A81. |

a I do not accurately apply for step- Thus, the crack size remained the same
stress situations. at the interface of the two stress re-

gions. This is the only boundary condi-
STEP STRES3 tion imposed and is the key element ofthe entire analysis. '

The growth of a crack under t is

sinusoidal stressing will be analysed The crack continues to grow at
from its initial size ai through two stress level A82 for 12 cycles until

95 4

, - - ....



01"

- I I I

t f

Fig. 4. Relative Crack Size
versus Cycle Ratio for
a, - 2.54 m (0.1 in.)

Define:

D1 a N (7)c! - Nf1

N *2- 4S2 >s cycle ratio partial damage at AS1

AS -S1 D2 (8)" "f2

U cycle ratio partial damage at AS2

*I Therefore, N2 - D2Nf2  (9)

0 0 Using Bqa. (4) through (8) and alge-
N2 NF braic manipulations, D2 can be calcu-

N UCYaLES) "ated. The result is

Fig. S. Crack Growth versus Cycles; D2 - 1 - Dl X (10)

AS1 and AS2 Applied Independently where

aC, A S2 >ASI; /a[11

'~ASI APHJEDPI~ /l4 kaU" - " /oFOR NJ CYCLES x

S- _ e

°V=m"/ __(11)

"2O~a AS, .. aiY2 A2

I1 AKc2)
0 I

0 N ( NJ Nfi JiY 2 AS2 2N (CYCLES) 1 _Ia 2

Fig. 6. Crack Growth versus Cycles; _ --
AS, and AS2 Applied Sequentially The fatigue life N. can then be

calculated using S eq. (9r

the critical Bsie 4c2 is reachedl at sq. (10) may be rearranged in a
which point failure occurs. H2 is the form that represents the proposed
fatigue life that is desired to be cal- damage law. Failure occurs for two
culated. sequentially applied stresses with
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cycle ratio damage expressions D1 and IOIVALENT DAMAGE
D2 when The term DIX in Eq. (12) may be

DlX + D2 = 1 (12) thought of as the equivalent damage at
AS2 that is done by *I actual cycles at

X is an algebraic function of the ini- ASl. There corresponds an equivalent
tial crack size, the applied stresses, number of stress cycles at 6S2 to pro-
a geometrical parameter, and the meter- duce the same damage as I cycles at
Lal's fracture toughness value. AS1 . Define the equivalent damage and

cycles as 0ie and Nle respectively.
The proposed law is a simple expres- Figs. 7 and 8 show damage cumulation

sion similar to Miner's law and reduces for the step-stress cases of AS2 > a 8-
to Miner's law for X - 1. X may be and A92 < a1. Dl, D2 Dle, and Ule
thought of as a correction factor to ac- are shown. is the cycles at AS2.
count for the crack propagation and Failure occurs for t = W2 - fatigue
failure dependency upon the values of life at A82.
AS, ai, Y or AKc . Given that ai, Y and
AIc are constants for a particular con- Dle - DIX  (14)
figuration, the following can be noted:

tile a Mif2 Dle (S
K • 1 for AS2 > ASl! 01+ D2< I l f Oe(5 l

BLASTIC-PLASTIC LIMITATIONS

X <l fOr A 2 < A 1 i D, + D2 > 1 Gowda and Topper [3) have shown

X a 1 if &I << ac, and ai " ac2  experimentally that for mild steel
plates subjected to cyclic inelastic

For a - ac2 the part will fail as strains the crack growth rate can be
soon as AS 2 is applied. D2 - 0 for a1  expressed an
- ac2- By setting D2 0 in sq. (12),
the proposed damage law applies for a l ( 1 C2 (AK')-1o =  l (A) I L. ' 2 (16)

The first term predominates in the
EXA PLR 2 elastic region. The second term

predominates in the plastic region.
Same configuration and dimensions Both terms are of the sane form as the

as for Example 1. Paris crack growth rate expression in
Eq. (3). Thus, It can be deduced that

ai 2.54 m (0.1 inch) the proposed damage law (Eq. 12)
accurately applies for cases where ASj

ASl a 138 MPa (20 ksi)l and A92 are in either the elastic or
A82  207 MPa (30 ksi) plastic region exclusively but not for

cases where they are in different

X1 .2;L-04 regions.
x -X 2.3 27F' 0.43 Eq. (16) further suggests that a

different damage law might apply for

Nf 729 cyclesi 62 cycles the case where AS and AS are in dif-
l ye if2  ferent elastic/plaitic regions.

Let 'Il = 219 cycles
2EXPRRIMENTAL VERIFICATION

Therefore D1  0.3 which is less than
0.43 A literature search yielded no ex-

perimental results to verify or refute
D2  1 - D1 X - 0.302 the proposed damage law for the case

where the initial crack size is large
N2 02 If 2 - 19 cycles compared to the critical crack sizes at

AS1 and 02 However, Dowling [4] re-
Thus, the fatigue life at AS2 is 19 ports on laboratory step-stress experi- .'
cycles, mental results where the specimens pre-

sumably have very small initial crack
Dl + D2 - 0.602 0 1 sizes. An appraisal of the accuracy of

Miner's law in this case would also be
Thus, Miner's law would not have an appraisal of the proposed damage
accurately predicted the fatigue life law.
H2 after the exposure to 91 cycles at
stress level h0l. In this case X * Dowling defines crack initiation as
2.327 1 1. a tensile mode crack across several
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Fig. 7. Damage Cumulation for
AS2 > AS1

D T

0

NL Nf F2

Fig. 8. Damage Cumulation for
AS2 < AS"

grains. The following results are fatigue curves. Thus, there exists a
reported: random root-mean-square (roa) stress a

that viii propagate a crack in a given
Several cycles of plastic straining average number of cycles of the sae
are required to initiate a crack, size as that of a calculable

corresponding sinusoidal stress AS.
Linear summation of cycle ratios
(Miner's rule) is close to unity if Fig. 9 shows both the sinusoidal
(1) the specimen is subjected to and random fatigue curves for the
several cycles of plastic prestrain- 7075-T6 aluminum alloy. S is the sinus-
ing to initiate a crack for the oidal stress amplitude which is equal
case of sinusoidal step-stress test- to half the stress range AS. a is the
ing, or (2) if the specimen is sub- random ra stress. For the random fa-
jected to random stressing where tigue curve, N represents the average
crack initiation normally occurs cycles to failure.
early in the life of the specimen. The general expressions for these

Linear summations of cycle ratio fatigue curves are

damages deviate from unity for
most when the difference between = As N -1/(17)
the applied stress levels ASI and 2

AS2 is greatest.

These test results are consistent with a = C N -l/0 (18)

the analytical derivations in this

paperl namely, the derived equations where A and C are material constants
apply in the stable crack growth region and 0 is a slope parameter Is]
(AKtb ( AK C A~c) and AS1 and AS2 must
berIn the same elastic or plastic At a given number of cycles,
stress region.

RANDOM STRESS CRACK GROWTH AS . (19
a C

For either single or two-degree-of- For 7075-T6, A - 1240 NPa (180 kni)g C
freedom systems, a calculable relation- = 552 NPa (80 ksi)
ship ES2 [61exists between a material'ssinusoi &I aS-HO and random *a-NO 68 4.5a
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r(ll-probability of failure at.00- Fooo uN* cycles
4.104

S -1240N MP F(3)1 1  r( le ) * probability of
* not failing in

4.104 region I and
e-21N MP failing in"

- '0 region I1

The following can be shown [SJ 3

0- 1/0
10mF( 1 ) erf + 0.5

S SINUSOiDAL STRESS f
AMPLITUDE

S- RANDOM RtMS STRESS ( 20 )

1102 103  10 10 W6 107 [r.l
X 1l/0

N "LES) ?(N -erf L -,I] + 0.5

Fig. 9. Sinusoidal and Random Fatigue (21)
Curves for 7075-T6 Aluminum Alloy

In this case, a sinusoidal stress range
that is equal in magnitude to 4.5a will
propagate a crack the ese size as a 1/
random stress of rus value a for the erfp it- + A + 0.5
same number of cycles. pL (Nfl Nf21

RANDOM STEP-STRESS (22)

For the case of two random rms step-
stress levels a 1 and a2, the equivalent where erfp (a) = Papoulis' [7] Error
sinusoidal stress ranges can be deter- Function
mined using Eq. (19). For 7075-TS, 68,
= 4.5 all AS 2 - 4.5 a2. The fatigue 2
life 2 is then calculated by using a -y /2

Eqs. (7) through (12) as in Example 2 erfp () - a J • dy
with the above values of 81 and A 82 ap- /2-v
propr iately substituted.

SCATTERSAND FATIGUE CURVE

A material's S-3 fatigue curve is erfp (0) - Of erfp (a) a 0.5

typically nota single line as shown in
Fig. 9 but a wider scatterband of fail- rfp(-) - erfp (a)
ure points. This scatterband can be
represented by letting the constant A it should be noted that F(NJ) P F(Nle)
in Eq. (17) and Fig. 9 become a random unless X - 1 and that F(N 1 ) F(H)Ir

variable. Let A be Gaussianly distrib- for N a 0. The reason is that Sle is

uted with average value 1 and standard associated with region II where ac2 1
deviation A. a1. The probability of failure can be

thought of as the probability of the

Define: crack size a exceeding the critical
size ac. If ac2 ' acl (i.e., X > 1), 0,

Region it AS * AS1I 0 <~ 11.1 Nfl (31)'(N> ). If ac2 > acl (i.e., X <
11), F(1le) < F(N1 ).

Region I- AS -2 0 N Regions I and I1 can be very dis-

joint in time. HMany calendar days can
0 H2 < Nf2 exist between laboratory acceptance

test vibration and in-flight vibration
(Se* Fig. 7) as an example. Bach of the stress

cycles Nl and U may be considered to be
F(N1 ) - probability of failure at discrete, not continuous. A part may

NJ cycles survive N1 cycles at A8l only to fail
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WONT.

during a portion of the first cycle at '(T ie) = 0.222
A&2 If a a 2 Or if A92 Is large
(e.g., a the uftimate stress). Thus# v(N-.2-33) - 0.5
-(N1) - P(Ne) is not a general
condition to be imposed at the boundary It can be seen that the probability4"of regions I and 11. Of failing at N a M2 is 0.5, not Unity-

This is because the scatterband repre-
EXAMPLE 3 sentation of the fatigue curve places

failure both before and after the value
For the material, configuration, of N2 a* shown in Fig. 7.

and dimensions of Example 1, calculate
the fatigue life N2 for the step-stress The fatigue life is M2 33 cycles.
random vibration stress case where al -
30.6 MPa rms (4.44 ksi rms) and 02 46
NPa rms (6.67 kei rms). CONCLUDING REMARKS

Given: 1. The proposed damage law for eithersinusoidal or random step-stress

NI 146 cyclei ai - 2.5 mm fatigue is similar to Miner's
(0.1 in.) linear cycle ratio law but containsa correction term which accounts

K = 1240 HPa (180 ksi)j for the dependency upon the values

A - 124 MPa (18 ksi)t W/A = 10 of stress range, initial crack
(flaw) size, the geometrical par-

S = 9.65 meter, and the material's fracture
toughness.

1-30.C ! ms (4.44 ksi rms) 2. The proposed damage law reduces to

02 =46 HPa rm (6.67 ksi rum) Miner's law when the correction
factor has a value of unity.

Equivalently 3. The proposed damage law is limited

ASI - 4.5 a1 - 138 MPa (20 ksi) in application to those cases where
the crack growth is in the stable

A82 - 4.5 a2 - 207 UPa (30 ksi) crack propagation region and where
both stress levels are in the

-Nfl 729 cycles; 2 62 cycles elastic or plastic stress regions.
Nf2  These are not considered to be very

- 8.10 mm (0.319 in.) severe limitations on applica-I aclbility.

ac2 -3.61 = (0.142 in.) 4. Reported step-stress test results
tend to confirm the proposed damage

D, - N1/Nfl - 0.2 law. Further verification for f
large initial crack sizes is

&I - 2.95am - a2 1 (0.116 in.) required.

5. The proper boundary condition to be
a= 0.817 imposed at the interface of the two
acI  ac2  stress regions is that the crack

size not change. The values of
X = 2.32 71 Dle - D1X a 0.465 cycle ratio damage and probability

0 of failure will change at the inter-

-2 1 - Dle - 0.535 face in general.

SYMBOLS
In crossing the boundary from

region I to region II, /ac went from
0.363 to 0.817 and the damage vent from a crack half-size (i.e.. half
Di a 0.2 to Die - 0.465. The crack length)
size al - a21 - 2.95 n (0.116 in.)
remained the same at the boundary. ac ac
changed from 8.10 - (0.319 in.) to critical values of crack half-
3.61 mo(0.142 in.). ,size

N2- D2 Nf1 - 33 cycles to failure intaaiakhafsz

(Hl) -0.0610 ai2

010 m~~~~~ ~ ~ I,-_ or 1 ._ -1 xI.

% % q. %

., % . %- . .^.-I- , % . ' P %
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A material constant; true ultimate B fatigue curve slope parameter
strong

average value of A standard deviation of A

b specimen half-width a random rms stress value

C constant of random fatigue curve 61 constants of crack growth rate
62 0 curves

cI  constants of crack growth rate a metre INC2  curves

m- millimetre

Dle cycle ratio damage functions MPa megaPascals
D2
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RANDOM FATIGUE DAMAGE APPROACH TO MACHINERY MAINTENANCE

T. S. Sankar, G. D. Xistris
Concordia University

Montreal, Quebec, Canada

and

G. L. Ostiguy
Ecole Polytechnique

Montreal, Quebec, Canada

Machinery vibrations are employed to obtain an estimate of the
stresses in critical mechanical elements under operating condi-
tions. The amount of fatigue damage incurred as a result of
these stresses is computed using a linear damage accumulation
law and expressions are developed for the expected value of the
damage sustained over a specific time period. The behavior of
these statistical parameters with operating time and with various
system fatigue properties is discussed. The calculated damage
provides a reliable indication of the remaining trouble-free
life and can be employed in the maintenance field to monitor
the performance of industrial machinery.

INTRODUCTION are then narfow band, high amplitude
processes and hence, the nature and

A significant part of the operating source of the defect can be easily iden-
cost of industrial processes is due to tified through a frequency analysis. On
machinery down-time and periodic main- the other hand, normal wear failures
tenance. These expenditures are the which are associated with wide band, low
direct result of defects either inherent amplitude stress histories, cannot be
in individual elements, or introduced assessed by any of the currently avail-
during the assembly of components. The able machinery monitoring techniques.
severity of these defects is progres-
sively enhanced during normal operation This paper proposes a machinery
of machinery resulting in certain dete- health monitoring procedure based on the
rioration of overall unit performance estimates of the accumulation of gradual
and this is commonly known as uwear". fatigue damage in specific machine ele-
When equipment performance falls below ments. The characteristics of the in-
design specifications, the unit is cremental damage functions incurred by
deemed to have failed. Such failures the critical components of a machine
may be catastrophic, if arising from during its life span, are inferred from
rapid degradation of defective parts, or the vibration histories, that form
gradual, if caused by normal wear and generally a random process, obtained at
tear. appropriate locations of the machine

system. The damage increments are sub-
Catastrophic failures are asso- sequently employed to calculate the

ciated with the presence of a single amount of fatigue life expended in a
dominant defect such as a badly damaged given time interval, thus providing an
antifriction bearing, severe misalign- estimate of the remaining expected %%ment of rotors or gross imbalance of maintenance-free life of the equipment.
rotating elements. Dominant defects
produce high stress values in the af- MACHINERY RESPONSE AS A CONDITION
fected components and failure occurs MONITOR
after a small number of operational

cce.The resulting stress histories Machinery breakdowns occur due to
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the gradual accumulation of fatigue CHARACTBRIZATION OF TE STRBSS-RESPONSE e
damage incurred by the machine elements HISTORY -,
which are subjected to fluctuating
stresses. These stresses are caused by In view of the assumed linearity
a resultant excitation representing the between stress and response functions,
complex combined effect of imbalance in s(t) can be characterized indirectly by
the rotating elements, misalignment assigning to it all the observed attri-
between segments of rotors installed butes of x(t).
with multiple rigid supports, bearing "
friction and the presence of bearing The first of such attributes is
defects, the meshing of gear trains, that the stress history 5(t), consti-
differences in thermal expansion charac- tutes a sample function of an ergodic
teristics of parts in the same sub- Gaussian, stochastic ensemble. The large
assembly and other internal, as well as, number of factors which contribute to
external load variations imposed by the the presence of s(t), together with the
operating environment, surface texture characteristics of the

interacting mechanical components, dic-
Individual direct measurement of tate that the stress process in machines

each of these disruptive forces is not must be stochastic with possibly apractical. Neither is it possible, to Gaussian distribution 141. The ergodi-
obtain their combined effect through the city assumption implies that the stress
actual stress histories under different process may be represented by a single
operating conditions. However, measure- sample function. Although no analytical
ments of the vibratory response history or experimental proof of ergodicity
are feasible and in most cases avail- exists, the observed good correlation
able. Under the assumption that ma- between vibration and defects for
chinery elements are elastic and iso- similar pieces of equipment [21, would
tropic, a simple relationship between appear to justify such a treatment.
the response measured at an exterior
point and the stress at a corresponding The second constraint on s(t) is
element within the machine, may be that it must be considered piecewise
developed. For the purpose of defining stationary. Experimental evidence 11,21
a machinery maintenance program, in shows that the inevitable deterioration
general it may be sufficient, as well as of dimensional clearances coupled with
practical, to assume a linear relation- the progressive worsening of latent
ship between stress and response in the mechanical and material defects are
form associated with an increase in vibration

levels. Thus, over the complete life
s(t) - a x(t) 1 (1) span of a machine, the observed response

and hence s(t) must be nonstationary.
where, s(t) is the stress history of one This phenomenon will be quite dominant
or more machine elements which is re- in the later stages of operation when
flected by a response history x(t) at a the rate of deterioration is generally
judiciously selected measurement loca- accelerated. However, if the total
tion. The constant of proportionality operating period is subdivided into ATi
a, takes into account all the combined intervals, it is always possible to
effects of material and system proper- consider the process as stationary with-
ties such as damping, stiffness and con- in each segment ATi 131.
figuration relative to the particular
monitoring location. In complicated The third constraint deals with the
machines where several monitoting sta- spectral characteristics of s(t). Be-

-, tions may be used, a will assume dif- cause of the many contributing factors
ferent values reflecting the internal and their related harmonics, 5(t) is
structure and properties at each parti- expected to be wide band. This asser-
cular location. tion is substantiated in part by the

evidence that modern equipment oper-
The use of equipment response x(t) ating under normal conditions, exhibit

as a condition monitoring parameter a relatively flat velocity spectrum up
appears to be a widely accepted practice to about 1.5 k~z (21. Narrow bandin the machinery maintenance field. The stress histories are associated with
current literature, contains several equipment where a single defect, such as
successful applications of this tech- a strong first order imbalance, is pre-
nique [1,2,3]*. dominant. Defects of this type lead to

very rapid catastrophic breakdowns as
opposed to failures resulting from the
gradual accumulation of damage. Since
predominant defects can be easily

*1 ] designates references listed at identified and, as a rule, have to be
the end. rectified immediately, purely narrow
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band stress histories are not consider- sents the contributions of the indivi-
ed in this investigation as a contri- dual fatigue damage increments 6D,
buting factor for gradual deterioration accrued as a result of each stress cycle
of equipment. occurring within the time interval AT.

Here, it can be assumed that the 6D's
Machinery vibration histories that are directly proportional to the ampli-

are piecewise stationary exhibit zero tude of the corresponding stress cycles.
mean over a limited number of cycles. This is essentially known as the linear
Since machine systems are rigidly at- fatigue damage hypothesis (5,61 which
tached, it follows that even though states that the amount of damage incur-
instantaneous values of x(t), i(t) and red as a result of a single whole stress
i(t) may not necessarily be zero, the cycle of amplitude a is related to the
mean values of the vibratory response total, number of cycles N(s), that the
process and the corresponding rate specimen can withstand at a constant
parameters, over an appropriately chosen stress amplitude s. The magnitude of
period of time, must tend to zero. the incremental damage functions 6D, can

be calculated from material fatigue
The final constraint on s(t) is data.

invoked in order to assure that the
primary mode of machinery breakdown is The most widely used method of pre-
accumulated damage under random fatigue. senting material fatigue properties is
This is accomplished by assuming that the s-N curve where the stress amplitude
s(t) is bounded so that smax does not is plotted against the number of cycles
exceed the component ultimate or yield for different loading arrangements. How-
strength. The effect of placing an ever, when the stress history is a wide
upper limit on x(t) and thereby on s(t), bend stochastic process, the stress
is to eliminate failures caused by the intensity cannot be adequately charac-
sudden application of overloads which terised by the amplitude parameter
are outside the domain of normal oper- alone. In such cases, it has been sug-
ating conditions. Such overloads may gested that a plot of as-N is a more
arise from the presence of distinct meaningful method of defining fatigue
machinery defects or external impact properties [73. Obviously, the calcu-
type loads which if not rectified imn- lation of 6D and thereby D(AT), will
diately, will lead to premature failure. depend on the method used to correlate
It should be pointed out, that predo- the fatigue data appropriate to each
minant defects and extraneous impacts :ase.
are practically always associated with
narrow band spectra. Also in order to
facilitate the analysis, it has been
assumed that s(t) is continuous and
differentiable at least twice.

FATIGUE DAMAGE FOR MACHINERY COMPONENTS 00

Because of the experimental scatter
in the reported material fatigue proper- 0
ties, it is customary to treat fatigue
life as a random variable having a
particular mean value and probability 0
distribution at failure. It is reason-
able therefore, to define the fatigue 0 0

damage D(AT), incurred as a result of 0
the ensemble of stress histories a(t)
during the time interval AT, as a random --
variable. In order to interpret the O
behavior of D(AT), it is desirable to U
establish its probability distribution.
This would be possible if a large number _ _ _ _ _

of identical machines were subjected to LegN
the same operating and environmental CYCLES, N
conditions. Clearly, this is a formi-
dable undertaking. However, for the
purpose of developing a machinery health Fig. Is Typical s-8 Representation of
monitoring program based on accumulated Fag. ata for Cosnt
damage estimates, it is sufficient to be retire atro stant
able to calculate the mean value of t Amplitude Stress Histories.

random variable D(AT).

The random variable D(AT) repre-
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DAMAGE ESTIMATES USING s-N CURVE po0,) - 2 (7)

Figure I depicts a typical s-N
curve for constant amplitude stress lso Lin [10] ha. shown that
histories. An approximate correlation
of the reported experimental results is a;
given by E[n) - 2w aj (8)

N(S) = ] (2) Substitution of Equation (8) into Equa-
tion (5) and using the resulting expres-

where C is a material constant and the sion for dD(Isi) together with Equation
exponent 0 is the negative reciprocal of (7) into Equation (6), the mean accumu-
the slope of the mean s-N curve. Since lated damage can be obtained as
machinery stresses are expected to have
a zero mean over a number of cycles, by E[D(AT)] AT. q) r(- (-)

anyM T) stes pear amliud aT2 O0 -0I Aapproximating each cycle to a sinusoid, a;
any stress peak amplitude can be found
from the relation This, expressed in terms of the response

process parameters for application to
a - .1±(3) machinery health monitoring reduces to

W 
2

where w is the circular frequency of the E[D(AT)] - AT A(S) (Zoi) (.) (9)
corresponding cycle. In several cycles
of a wide band process, the average
circular frequency can be represented by where A(M) - !V r! + 1)R -

W 2
w - 2w E[n] (4) Z a

C
where E n] is the expected value of the and R - *.

frequency of -the peaks for any station-
ary random process.

In most cases where the processes
Combining Equations (2), (3) and are orderly, R is expected to be equal

(4) and taking into account the inverse to unity. The material response para-
relationship between 6D and N(s), it can meter Z embodies the effects of damping,
be shown that configuration and fatigue strength par-

e ticular to each measurement source.
IC(2w E[n])2 (5) DAMAGE ESTIMATES USING as-N CURVE

Figure 2 illustrates an alternate
To obtain an expression for the expec- method of presenting fatigue test data.
tation of the damage accumulated in time Such data are obtained by subjecting
AT, the interval AT is subdivided into specimens of the same material and geo-
smaller segments. The condition for a metry to a continuous stationary random
stress peak to occur within any of the stress process {s(t)), under identical
smaller time segments and thereby cause environmental conditions. A sample
an increment of damage equal to 6D(IiI) function of {s(t)) is illustrated in
to be accrued, is given by the joint Figure 3.
probability density, function for all
possible i(t) with s(t) - 0. Following Wirsching and Haugen [7) have pos-
a procedure analogous to [8), it can be tulated that each tensile peak of {s(t)}
shown that causes a certain amount of damage. The

total damage in time AT, due to all
B1 E[D(AT)]=AT f" 8D(II)ii]p(O,i)di peaks which lie in the interval [sj,

p a(6) Sj + As) is given by

where the Joint probability density * for sj>O (function p(s-0;1) has been written ass frs0

p(O,i). "Dj(AT) - (10)

For a normal process with zero
mean, the joint probability density
function p(Oi) is [91 where n4(AT) is the expected total num- a

ber of stress peaks with amplitude in
the interval Isj ej + As] in time AT,
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Denoting the total expected number
of peaks of {s(t)) in time AT by n(AT)
then

nj(AT) - n(AT) p(sj)As (11)

00 where p(sj) is the probability density

O function of the peak heights of (s(t))
0 covering the interval [sa, sl + As].

Defining a non-dimensionil rindom vqri-
1 able k - s/os and integrating Equation

(10) with (11) yields

D(AT) n(12)

Z where 0 - f kO p(k)dk. The integral
which is a0 function of the spectral and
mean value properties of the stress
process has been computed in 17]. Values
of B appropriate to machinery elements
have been summarized in Table 1. From
Equation (8)

An(T) - AT (13)
CYCLES, N TV a;

Substituting Equation (13) into Equation
Fig. 2: Typidal as-N Representation of (12) and averaging both sides of the

Fatigue Data for Random Stress resulting expression yields in terms of
Histories. the response process parameters

E[D(AT)] - AT(Zr(x) (!:)F (14)

where
7 Zr- w

II - r

;t A P\Cr - E(AJ"/
S and Ro

: S I S / F =

0. iis the material response parameter
for random fatigue and the constant R
has been defined in Equation (9).

DISCUSSION AND ANALYSIS OF RESULTS

Figure 4 shows the variation of
E!D(AT)J with operating time for dif-
ferent values of the exponent of the
appropriate fatigue curve as predicted
by Equations (9) and (14). It is appa-
rent from the nature of these equations,

Fig. 3: Sample Function of a Wide Band that in both cases the expected value of
Random Stress Ensemble the accumulated damage increases linear-

ly with operating time. The upper limit
for EID(AT)] is taken as unity in accor-
dance with Miner's criterion.

# is the negative reciprocal of the Further, Figure 4 shows that
slope of the random fatigue curve and A EtD(AT)] varies inversely with # and 0.
is a random variable which reflects the For example, after 10' seconds of opera-
variability of strength properties of tion, the mean accrued damage is
similar specimens of a given material.
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TABLE 1
*" Values of the Function B for R 1.0 and Zero Mean Stress Calculated from (7).
,. The Parameter y is the Ratio of Expected Number of Zero Crossings from Below

- per Unit of Time to the Expected Number of Peaks per Unit of Time.

S y- 1.0 Y 0.9 y - 0.8 y - 0.7 y - 0.6 Y = 0.5

3 3.776 3.398 3.021 2.719 2.417 2.115

5 19.30 17.37 15.44 13.51 11.97 10.42

7 132.3 119.0 105.8 92.58 79.35 68.77

9 1215 1093 971.6 825.9 704.4 607.3

TABLE 2
Material Fatigue Constants for Stress Values in psi

Constant Amplitude Random
Material and Loading form

0 C ef. Cr  Ref. 4

Mild Steel - Axial . x2 xSu - 365 NPa (53 ksi) 11.5 O.9x10' [121 7.2 l.5XlO' (151

Al 2024 - T3 8 1.0xl05 [131 5.7 2.7xlO (141
4Bending

Al 2024 - T3 6.7 l.2x10' [14] 5.6 2.lxlO s  [15]
Axial

Al 7075 - T6 6.7 1.7x10 s  (14] 3.2 7.8x10 s  (151
Bending

1.3 x 10- 6 and 9.1 x 10
- 1 for * - 7 and as can be inferred from the general

* * -5 respectively. Large values of * trend of the constants C and Cr. Small
imply a relatively flat Og-N curve and values of C and Cr are characteristic of
therefore, for a given random stress materials with low fatigue resilience
environment, the mean number of cycles and hence, a low number of cycles to
to failure will be high. Thus, for failure. For a given a, small C and Cr
large #, each stress cycle is associated will result in large Z and Zr yielding
with a small damage increment resulting high damage accumulation rates. This is
in the behavior illustrated in Figure 4. illustrated in Figures 5 and 6 where it
Simtlarly after 10' seconds of operation is seen that E(D(AT)]/AT increases
E[D(aT)] attains values of 3.0 x 10-6 linearly with Z and Zr respectively when
for 6 - 9 and 0.7 for 0 - 5. This vari- plotted on log-log axes.
ation is consistent with the interpreta-
tion of the s-N curve. Since # and 0 Figures 5 and 6 also delineate the
are independent, direct comparison of inverse dependence of E[D(AT)]/aT on * * 4

EBD(AT)] for identical values of the and 0. However, the influence of the
exponents is not meaningful. In general, fatigue exponents on E[D(AT)]/AT appears

values of # tend to be somewhat lower to diminish with increasing values of
than 0 for the same material subjected the material response parameter. This
to the same stress mode. This is evi- is manifested by the convergence of the
dent in Table 2 where fatigue parameters plotted curves. It would appear that _O___.

for typical materials are smarised. for the range of 0 and values consi-
dared in the investigation and for high

(ID(AT)] is also dependent on the values of the corresponding material
. material response parameter. Table 2 response parameter, E [D(AT)]/AT may be

shows that Zr is usually smaller than Z approximated as a function of Z or Zr
only.
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It is evident from the above dis- procedure is uneconomical and imprac-
cussion that estimates of E[D(AT)J will tical. An alternate approach is to
involve either form of the material approximate the ideal continuous record
response parameter am indicated above. with periodic discrete measurements
When analyzing the performance of sini- each lasting At seconds taken AT inter-
lar machines, it can be reasonably vals apart as illustrated in Figure 7.
assumed that they possess the same This method would be acceptable provi-
structural characteristics (this im- ded that the AT intervals are chosen in
plies that the constant a is the same) the following manner: Select a signal
and therefore, the rate of damage accu- recording length At which is adequate
mulation will depend only on the stan- to represent the salient signal charac-
dard deviations of the response signals. teristics and it is compatible with the
A machine which exhibits a high value storage capability of the digital data
of E[D(AT)]/AT will reach its fatigue processing devices used for computing
limit before a unit with a correspond- the standard deviations. The choice of
ingly lower damage accumulation rate. a particular At defines the limit of
In all other applications, it becomes accuracy which is attainable in the
necessary to select a value of Z or 2r determination of the process rate para-
appropriate to each location. Preli- meters. The interval AT between succes-
minary data developed in connection with sive records of At duration, should be
this investigation have established that such that the variation in the standard
for most industrial machines 0.1<Z<50. deviations calculated from these two
This result was obtained by extrapo- signals does not exceed the confidence
lating available vibration and perfor- limits dictated by the choice of At. if
mance records of torsional systems in the rate parameters obtained at Ati and
the 1000 to 3000 HP range and elec- Ati+l differ by more than what can be
trically driven pump sets up to 100 HP. attributed to the influence of the
The wide range in the observed values recording length used, then over this
of Z clearly indicate the need for AT, the calculation of E[D(AT)j should
further experimental work in this area. be made using mean values for the rate

parameters obtained from Ati and Atial.
CUMULATIVE DAMAGE AS A MONITORING TOOL Subsequent measurements should be made

at smaller intervals, i.e. ATi+liATI/2.
Since the primary cause of normal As long as the rate parameters remain

wear machinery breakdowns has been iden- relatively constant on the basis of the
tified as some form of fatigue failure, above described procedure, the process
the cumulative damage calculated from can be considered stationary and
Equations (9) or (14) can be employed E(D(AT)J calculated over the sum of all
as a condition monitoring tool in an the intermediate ATi. For machinery
industrial equipment maintenance scheme, approaching failure (i.e., E E[D(AT i)]
In such an application, the E[D(AT)J can < 0.7), the deviation of theirate para-
be interpreted as an indication of meters can be expected to be signifi-
the average amount of trouble-free life cant and proper care must be exercised
expended over a given operating period, in the choice of At's and AT's.
Alternately, it is an estimate of the
probable remaining useful life of Initial experimental evidence indi-
machine systems. cates that this method of ascertaining

machinery reliability is promising,
The maintenance programs proposed particularly in cases where previous

in this investigation require measure- experience of equipment vibratory beha-
ment of the vibratory response time vior is unavailable. The main advan-
history at selected points of the ma- tags of this approach is that machinery
chine system. The actual number of condition assessment can be made in
signal monitoring stations will depend terms of component fatigue properties
on the complexity of the machine struc- and the actual stress histories which
ture. For most common equipment the arise under operating conditions.
number of measurement sources corres-
ponds to the number of principal bear- ACKNOWLEDGMENT
ings in the system.

This research was carried out under
The standard deviations required in FCAC Grant 042-110 from the Government

Equations (9) and (14) may be obtained of Quebec.
for each signal using digital data ana-
lysis techniques. The relative fluc-
tuations in these process rate para-
meters depend primarily on the length of
the signal record chosen (111. Ideally,
the signal should be available in a con-
tinuous form. However, such a monitoring
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Fig. 4: Mean Accumulated Damage as a Function of Operating Tim
Computed f or a Stream Process Characterized by
ax - 0.225 x 10-2cm (0.887 x 10-sin), ai - 3.383 cm/s
(1.332 in/e), ailai - 1502 sec-I and for the Following
System Parameters Z - 10.0, Sr -5.0 and y -1.0.
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Fig. 5: Damage Accuulation Rate as a Function of the Random
Fatigue Material Response Parameter for y 1. *0,

ax 0.225 cm (0.887 x l0'lin) and uj/usj 1502 sec-1.
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Fig. 6: Damage Accumulation Rate as a Function of the Constant
Amplitude Fatigue Material Response Parameter for a
Stress Process with ax~ - 3.383 cu/s (1.332 in/a) and

G/i-0.667 x 10-3 sec.
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AT

OPERATING TIME ~4

* Fig. 7: Schematic Representation of the signal Recording
a Durations and the Period of Stationarity Intervals.
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